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Biography

A brief biography

1945 Born in Loughborough
1965–68 BSc Mathematical Statistics, Birmingham
1968–69 Research Assistant to Maurice Bartlett, Oxford
1970–75 Lecturer in Statistics, Liverpool
1975–89 Reader (from 1985, Professor), Durham
1989–90 Visiting professor, U Washington
1990–91 Professor, Newcastle-upon-Tyne
1991–2007 Professor, U Washington
2007–09 Visiting professor, Bath
2010 Died in Bristol

Visiting appointments in Oxford, Princeton, Western Australia, ISI New Delhi, PBI
Cambridge, Carnegie-Mellon, Stanford, Newcastle-u-Tyne, Washington, CWI Amsterdam,
Bristol
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Methodology

Methodology

Spatial statistics
Modelling, conditional formulations
Frequentist and Bayesian inference
Algebra of interacting systems
Digital image analysis

Monte Carlo computation and hypothesis testing
Markov chain Monte Carlo methods
Exploratory data analysis
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Methodology Spatial statistics: Modelling, conditional formulations

Modelling, conditional formulations: key papers

Nearest-neighbour systems and the auto-logistic model for binary data. Journal of the
Royal Statistical Society B (1972).

Spatial interaction and the statistical analysis of lattice systems (with Discussion). Journal
of the Royal Statistical Society B (1974).

On spatial-temporal models and Markov fields. Proceedings of the 10th (1974) European
Meeting of Statisticians (1977).
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Methodology Spatial statistics: Modelling, conditional formulations

The 1974 paper in JRSS(B) 192 [No. 2, 

Spatial Interaction and the Statistical Analysis of Lattice Systems 

By JULIAN BESAG 
University of Liverpool 

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH SECTION 
on Wednesday, March 13th, 1974, Professor J. DURBIN in the Chair] 

SUMMARY 
The formulation of conditional probability models for finite systems of 
spatially interacting random variables is examined. A simple alternative 
proof of the Hammersley-Clifford theorem is presented and the theorem is 
then used to construct specific spatial schemes on and off the lattice. 
Particular emphasis is placed upon practical applications of the models in 
plant ecology when the variates are binary or Gaussian. Some aspects of 
infinite lattice Gaussian processes are discussed. Methods of statistical 
analysis for lattice schemes are proposed, including a very flexible coding 
technique. The methods are illustrated by two numerical examples. It is 
maintained throughout that the conditional probability approach to the 
specification and analysis of spatial interaction is more attractive than the 
alternative joint probability approach. 

Keywords: MARKOV FIELDS; SPATIAL INTERACTION; AUTO-MODELS; NEAREST-NEIGHBOUR 
SCHEMES; STATISTICAL ANALYSIS OF LATTICE SCHEMES; CODING TECHNIQUES; 
SIMULTANEOUS BILATERAL AUTOREGRESSIONS; CONDITIONAL PROBABILITY 
MODELS 

1. INTRODUCTION 
IN this paper, we examine some stochastic models which may be used to describe 
certain types of spatial processes. Potential applications of the models occur in 
plant ecology and the paper concludes with two detailed numerical examples in this 
area. At a formal level, we shall largely be concerned with a rather arbitrary system, 
consisting of a finite set of sites, each site having associated with it a univariate 
random variable. In most ecological applications, the sites will represent points or 
regions in the Euclidean plane and will often be subject to a rigid lattice structure. 
For example, Cochran (1936) discusses the incidence of spotted wilt over a rectangular 
array of tomato plants. The disease is transmitted by insects and, after an initial 
period of time, we should clearly expect to observe clusters of infected plants. The 
formulation of spatial stochastic models will be considered in Sections 2-5 of the 
paper. Once having set up a model to describe a particular situation, we should then 
hope to be able to estimate any unknown parameters and to test the goodness-of-fit 
of the model on the basis of observation. We shall discuss the statistical analysis of 
lattice schemes in Sections 6 and 7. 

We begin by making some general comments on the types of spatial systems 
which we shall, and shall not, be discussing. Firstly, we shall not be concerned here 
with any random distribution which may be associated with the locations of the sites 
themselves. Indeed, when setting up models in practice, we shall require quite 
specific information on the relative positions of sites, in order to assess the likely 
interdependence between the associated random variables. Secondly, although, as in 
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Methodology Spatial statistics: Modelling, conditional formulations

JRSS(B) 1974: the Hammersley–Clifford theorem

The theorem states that “Markov random fields are the same as Gibbs distributions” –
that is, that a multivariate distribution satisfies the Markov random field property if and
only if its log-density is additive over cliques.
Besag gave a simple proof of this, assuming “positivity” – essentially that any combination
of values realisable locally was realisable globally.
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JRSS(B) 1974: the Hammersley–Clifford theorem

198 BESAG - Statistical Analysis of Lattice Systems [No. 2, 

for any 1 < i<j< ... < s < n, the function G1 in (3.3) may be non-null if and only if the 
sites i,j, ...,s form a clique. Subject to this restriction, the G-functions may be chosen 
arbitrarily. Thus, given the neighbours of each site, we can immediately write down 
the most general form for Q(x) and hence for the conditional distributions. We shall 
see examples of this later on. 

Proof of theorem. It follows from equation (3.2) that, for any x e Q, Q(x) - Q(x,) 
can only depend upon xi itself and the values at sites which are neighbours of site i. 
Without loss of generality, we shall only consider site 1 in detail. We then have, from 
equation (3.3), 

Q(x)- Q(x1) = Xi G1(X1) + E xi G1J(x1, x1) + X Xi Xk GlJ,k(Xl, Xi, XJ) + 
2<S<n 2:!5<k<n 

+ X2 X3 ... xn G1,2,..n(x, x2, .. Xn), 

Now suppose site 1 (# 1) is not a neighbour of site 1. Then Q(x) - Q(xl) must be 
independent of xl for all x e Q. Putting xi =0 for io 1 or 1, we immediately see that 
G1 ,(xl, x) = 0 on Q. Similarly, by other suitable choices of x, it is easily seen succes- 
sively that all 3-, 4-, ..., n-variable G-functions involving both xl and x1 must be null. 
The analogous result holds for any pair of sites which are not neighbours of each 
other and hence, in general, G can only be non-null if the sites i,j, ..., s form a 
clique. 

On the other hand, any set of G-functions gives rise to a valid probability distri- 
bution P(x) which satisfies the positivity condition. Also since Q(x) - Q(xj) depends 
only upon x1 if there is a non-null G-function involving both xi and x1, it follows that 
the same is true of P(x* j xl, ..., xi-,, xi+, ..., xn). This completes the proof. 

We now consider some simple extensions of the theorem. Suppose firstly that the 
variates can take a denumerably infinite set of values. Then the theorem still holds if, 
in the second part, we impose the added restriction that the G-functions be chosen 
such that E exp Q(x) is finite, where the summation is over all x E Q. Similarly, if the 
variates each have absolutely continuous distributions and we interpret P(x) and 
allied quantities as probability densities, the theorem holds provided we ensure that 
exp Q(x) is integrable over all x. These additional requirements must not be taken 
lightly, as we shall see by examples in Section 4. Finally, we may consider the case of 
multivariate rather than univariate site variables. In particular, suppose that the 
random vector at site i has vi components. Then we may replace that site by v* 
notional sites, each of which is associated with a single component of the random 
vector. An appropriate system of neighbours may then be constructed and the 
univariate theorem be applied in the usual way. We shall not consider the multi- 
variate situation any further in the present paper. 

As a straightforward corollary to the theorem, it may easily be established that for 
any given Markov field 

P(X* = xi, Xi = Xi, ..., X,= x I all other site values) 

depends only upon xi,x1,..., x and the values at sites neighbouring sites i,j, ...,s. In 
the Hammersley-Clifford terminology, the local and global Markovian properties are 
equivalent. 

In practice, we shall usually find that the sites occur in a finite region of Euclidean 
space and that they often fall naturally into two sets: those which are internal to the 
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Markov random fields
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Markov random fields
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Markov random fields

?
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Markov random fields

?
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Methodology Spatial statistics: Modelling, conditional formulations

Markov random fields = Gibbs distributions
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Markov random fields = Gibbs distributions
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Methodology Spatial statistics: Modelling, conditional formulations

The Hammersley–Clifford theorem

Many years later, the theorem was superseded by a more complete understanding of
Markov properties in undirected graphical models: we can distinguish Global, Local and
Pairwise Markov properties, and relate all these to the Factorisation property of Gibbs
distributions; in general

F =⇒ G =⇒ L =⇒ P

and under an additional condition implied by positivity they are all equivalent.
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Pairwise Markov property

  
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Global Markov property
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Methodology Spatial statistics: Modelling, conditional formulations

Other key ideas in the 1974 paper

Auto-models
auto-normal, auto-logistic, etc
establishes idea that the natural multivariate generalisations of standard univariate
distributions might be based on conditional not marginal distributions having the
assumed form.

Inferential methods for MRFs
Ecological applications
Characterisation of MRFs as equilibria of certain space-time models
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Methodology Spatial statistics: Frequentist and Bayesian inference

Inference in spatial systems: key papers

Statistical analysis of non-lattice data. The Statistician (1975).

On the estimation and testing of spatial interaction in Gaussian lattice processes.
Biometrika (1975). (with Pat Moran)

Errors-in-variables estimation for Gaussian lattice schemes. Journal of the Royal
Statistical Society B (1977).

Efficiency of pseudo-likelihood estimation for simple Gaussian fields. Biometrika (1977).
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Pseudo-likelihood estimation

will not necessarily be unique. For the simplest lattice schemes, the 
proportion of blackened sites may be as high as 50 per cent but, in typical 
(non-lattice) geographical applications, one might expect a value nearer 
30 per cent. 

Experience with the coding technique has thus far been extremely 
limited. Two very simple lattice examples are considered numerically in 
Besag (1974a), whilst Besag and Moran (1975) discuss the efficiency of 
the technique for basic auto-normal lattice schemes. These investigations 
are unfortunately of little direct relevance in non-experimental situations. 
In fact, as a general rule, the coding technique would seem a somewhat 
inefficient procedure in the way that the white-site terms pi(t) are entirely 
ignored once Sn,o has been generated. We therefore consider an alter- 
native proposition. 

3.3. A Pseudo-likelihood Technique 
Given the previous set-up, perhaps the most naive approach to the esti- 
mation of the unknown parameters in the terms pi() would be to take 
that vector 4t which maximizes the quantity 

n 
Ln E I n pi(qj (3 .2) 

i=l1 

with respect to 'P. Of course, Ln is not the true log-likelihood function 
for the sample (except in the trivial case of complete independence) and 
yet its maximization, especially in view of the coding technique, would 
seem to present an intuitively plausible method of estimation. That this 
intuition can be given a theoretical foundation will be seen later on. Note 
that although the pseudo-likelihood technique confers the advantages 
that no coding is required and that all the p-functions are used in the 
maximization process, it does have the drawback that no sampling proper- 
ties of the estimates are yet known. Nevertheless, one supposes that the 
method will, on the whole, produce better point estimates of the para- 
meters than does the coding technique. 

Although maximum pseudo-likelihood estimation is intended to have 
fairly widespread applicability, it is of special interest to see how it fares 
with the auto-normal schemes of section 2. In particular, we suppose that 

pi(.) = (2ru2)-1/2 exp [-iu-{x2 p- _- P i,j(xj- _ ] (3.3) 

so that, possibly following suitable rescaling, Xi has conditional variance 
a2 for each i. Observing the proposals in section 2.4, we also assume that 
,u=DO and that i,3 ,=hi,ij, where D and H_{hi,j} are known n xp and 
nxn matrices, respectively; thus B=I-H# and 0, f and a together 

190 
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Pseudo-likelihood estimation

Thus in a Markov random field x , indexed by sites i ∈ S, with parameter ψ, the maximum
pseudo-likelihood estimator of ψ is that maximising∏

i∈S

p(xi |xS\i , ψ)

... evidently not the joint probability of anything! It is motivated by Besag’s previous
‘coding technique’ estimator where the product is restricted to sites i that are not
neighbours of each other, when it is a straightforward conditional likelihood.
It has proved a powerful and durable idea in various contexts with dependent data,
notching up now 733 citations.
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Pseudo-likelihood estimation
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Algebra of interacting systems: key papers

On a system of two-dimensional recurrence relations. Journal of the Royal Statistical
Society B (1981).

On conditional and intrinsic autoregressions. Biometrika (1995) (with Charles
Kooperberg).

Markov random fields with higher-order interactions. Scandinavian Journal of Statistics
(1998) (with Håkon Tjelmeland).

A recursive algorithm for Markov random fields. Biometrika (2002) (with Francesco
Bartolucci).

First-order intrinsic autoregressions and the de Wijs process. Biometrika, 92, 909-920
(2005) (with Debashis Mondal).
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Intrinsic autoregression and the de Wijs process
Biometrika (2005), 92, 4, pp. 909-920 
(C 2005 Biometrika Trust 
Printed in Great Britain 

First-order intrinsic autoregressions and the de Wijs process 
BY JULIAN BESAG AND DEBASHIS MONDAL 

Department of Statistics, Box 354322, University of Washington, Seattle, Washington 98195, 
U.S.A. 

julian~stat.washington.edu debashis~stat.washington.edu 

SUMMARY 

We discuss intrinsic autoregressions for a first-order neighbourhood on a two 
dimensional rectangular lattice and give an exact formula for the variogram that extends 
known results to the asymmetric case. We obtain a corresponding asymptotic expansion 
that is more accurate and more general than previous ones and use this to derive the 
de Wijs variogram under appropriate averaging, a result that can be interpreted as a two 
dimensional spatial analogue of Brownian motion obtained as the limit of a random 
walk in one dimension. This provides a bridge between geostatistics, where the de Wijs 
process was once the most popular formulation, and Markov random fields, and also 
explains why statistical analysis using intrinsic autoregressions is usually robust to changes 
of scale. We briefly describe corresponding calculations in the frequency domain, including 
limiting results for higher-order autoregressions. The paper closes with some practical 
considerations, including applications to irregularly-spaced data. 

Some key words: Agricultural field trial; Asymptotic expansion; De Wijs process; Earth science; Environmetrics; 
Geographical epidemiology; Geostatistics; Intrinsic autoregression; Markov random field; Variogram. 

1. INTRODUCTION 

Let {X.,,: u, v E if = 0, + 1, . .. } be a homogeneous first-order intrinsic autoregression 
on the two-dimensional rectangular lattice i2 (Ktinsch, 1987; Besag & Kooperberg, 1995; 
Rue & Held, 2005, Ch. 3), with generalised spectral density function 

f(W, a)=K(1-2/3cosw-2ycosq)-' (wiqE(-m,]) (1) 

and conditional expectation structure 

E(XuvI ... )= /(x1,,v+xx+1l,))+y(xu," 1+xuv+1), var(XIvl ...)= K, (2) 

where /3, y > 0 and 3 + y = 2. Note that we use the term 'order' to identify the neighbour 
hood structure of a scheme. This is consistent with Besag (1974) for stationary auto 
regressions but differs from Kiinsch (1987), which follows Matheron (1973) in using the 
term to describe the level of degeneracy. It is convenient and incurs no loss here to assume 
that K = 1 and that {X,v } is Gaussian. The above formulation provides distributions 
for all constrasts among the Xu,, rather than for the Xuv themselves. In particular, all 
differences XU - Xu+1 +t have well-defined distributions, with zero means and lag (s, t) 
variogram 

Vst= 1 var(Xu U-X+ v~ (s, t E if). (3) 
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Intrinsic autoregression and the de Wijs process

910 JULIAN BESAG AND DEBASHIS MONDAL 

Any first-order intrinsic autoregression can be interpreted as a process of independent 
increments between adjacent sites of the lattice, conditioned by the logical zero-sum con 
straints that are induced around each cell. Separate variances are permitted for rows and 
for columns; see Ktinsch (1999) regarding the proof of this result, which also extends to 
higher-order schemes and to intrinsic autoregressions on finite graphs, provided all con 
trasts have well-defined distributions. Alternatively, the scheme (2) can be interpreted as 
a limiting form of the corresponding stationary autoregression, originally due to Levy 
(1948), as the interaction parameters /3 and y approach the boundary 3+y=4 of the 
parameter space. This also generalises to higher-order lattice schemes. Besag (1981) 
discusses the autocorrelation properties of the first-order stationary autoregression. 
We close this section with some brief remarks about the de Wijs process (de Wijs, 1951, 

1953; Matheron, 1971), a generalised continuum formulation that takes nonzero values 
with respect to contrasts between averages over areas rather than values at points. The 
restriction to averages is relevant in practice, where 'point' measurements are generally 
idealisations. The de Wijs process is Gaussian and Markovian and its variogram intensity 
increases as the logarithm of distance, which underlies its invariance to conformal trans 
formations and its physical appeal as a basic model. To be more specific, the de Wijs 
process {Y,,} is a generalised Gaussian Markov process indexed by functions (o on the 
plane that integrate to zero and that give rise to the well-defined variance formula 

var(Ye ) - log 11 x-y 11 (x)q(py) dx dy. 

In particular, let ~9(x) = 1A(x)IIAI- 1B(X)IJBI, where A and B are two regions of the 
plane with respective areas JAI > 0 and IBI > 0. Then we interpret Y1, as the difference in 
the average values YA and YB of the de Wijs process over A and B. These averages 
correspond to an intrinsic process with a single degeneracy and generalised variogram 
defined by VAB = 2 var(YA- YB). Note that the spectral density function of the de Wijs 
process is inversely proportional to W2 + q2. We return to this in ? 4 2 together with some 
generalisations. 

In mining, the de Wijs model was once the automatic choice of engineers but it seems 
to have gone largely out of fashion with the development of geostatistics, for reasons that 
are not entirely clear, though there are computational problems in dealing with large 
datasets. It is still popular in South Africa in its original context of gold mining but 
elsewhere is usually relegated to being a limiting case of the Matern (1986) family and is 
rarely mentioned by name. However, an unpublished University of Chicago technical 
report by P. McCullagh and D. Clifford, containing an extensive empirical study of 
agricultural uniformity trials, argues persuasively that, when augmented by a white noise 
component, the de Wijs process generally provides an adequate fit within the Matern 
class. Indeed, the paper proposes a 'loi du terroir' on this basis. A by-product of our paper 
is that it enables a close approximation to the de Wijs process plus white noise to be fitted 
to large datasets and to be used for predictive inference. 

2. EXACT VARIOGRAM CALCULATIONS FOR FIRST-ORDER INTRINSIC 

AUTOREGRESSIONS 
It follows from equation (2) that the v for the first-order intrinsic autoregression satisfy 

the system of recurrence equations, 

vSt =- ss ? /3(V8.1,t ? VS+1,) + y(vss,-1 ? vst+1) (S, t E A) (4) 
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Intrinsic autoregression and the de Wijs processOriginal lattice L1 with array D1 and cells A and B

B

A

24
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Intrinsic autoregression and the de Wijs processSublattice L2 with subarray D2 and cells A and B

B

A

Consider first–order intrinsic autoregression on L2 averaged to D1

29
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Intrinsic autoregression and the de Wijs processSublattice L4 with subarray D4 and cells A and B

B

A

Consider first–order intrinsic autoregression on L4 averaged to D1

31
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Intrinsic autoregression and the de Wijs processSublattice L8 with subarray D8 and cells A and B

B

A

Consider first–order intrinsic autoregression on L8 averaged to D1

32
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Intrinsic autoregression and the de Wijs process
Integrated de Wijs process Intrinsic autoregression

256 × 256 arrays

28

... provides a rigorous link between geostatistical models and (intrinsic) lattice Markov
random fields, explaining empirical robustness of discrete-space formulations to changes
of scale.

Green (Bristol) Julian Besag FRS, 1945–2010 Dublin, August 2011 33 / 57



Methodology Spatial statistics: Digital image analysis

Digital image analysis: key papers

On the statistical analysis of dirty pictures (with Discussion). Journal of the Royal
Statistical Society B (1986).

Towards Bayesian image analysis. Journal of Applied Statistics (1989).

Bayesian image restoration, with two applications in spatial statistics (with Discussion).
Annals of the Institute of Statistical Mathematics (1991) (with Jeremy York and Annie
Mollié)
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The 1986 paper in JRSS(B)J. R. Statist. Soc. B (1986) 
48, No. 3, pp. 259-302 

On the Statistical Analysis of Dirty Pictures 

By JULIAN BESAG 

University of Durham, U.K. 

[Read before the Royal Statistical Society, at a meeting organized by the Research Section on Wednesday, 
May 7th, 1986, Professor A. F. M. Smith in the Chair] 

SUMMARY 
A continuous two-dimensional region is partitioned into a fine rectangular array of sites or 
"pixels", each pixel having a particular "colour" belonging to a prescribed finite set. The 
true colouring of the region is unknown but, associated with each pixel, there is a possibly 
multivariate record which conveys imperfect information about its colour according to a 
known statistical model. The aim is to reconstruct the true scene, with the additional 
knowledge that pixels close together tend to have the same or similar colours. In this paper, 
it is assumed that the local characteristics of the true scenie can be represented by a non- 
degenerate Markov random field. Such information can be combined with the records by 
Bayes' theorem and the true scene can be estimated according to standard criteria. However, 
the computational burden is enormous and the reconstruction may reflect undesirable large- 
scale properties of the random field. Thus, a simple, iterative method of reconstruction is 
proposed, which does not depend on these large-scale characteristics. The method is 
illustrated by computer simulations in which the original scene is not directly related to the 
assumed random field. Some complications, including parameter estimation, are discussed. 
Potential applications are mentioned briefly. 

Keywords: IMAGE PROCESSING; PATTERN RECOGNITION; SEGMENTATION; CLASSIFICATION; 
IMAGE RESTORATION; REMOTE SENSING; MARKOV RANDOM FIELDS; PAIRWISE 
INTERACTIONS; MAXIMUM A POSTERIORI ESTIMATION; SIMULATED ANNEALING; 
GIBBS SAMPLER; ITERATED CONDITIONAL MODES; GREY-LEVEL SCENES; AUTO- 
NORMAL MODELS; PSEUDO-LIKELIHOOD ESTIMATION. 

1. INTRODUCTION 
There has been much recent interest in the following type of problem. A continuous two- 

dimensional region S is partitioned into a fine rectangular array of sites or picture elements 
("pixels"), each having a particular colour, lying in a prescribed set. The colours may be 
unordered, in which case they are usually tokens for other attributes associated with S, such as 
crop types in satellite images, or may be ordered, in which case they are usually grey levels and 
represent the value per pixel of some underlying variable, such as intensity. In either case, there 
is supposed to be a true but unknown colouring of the pixels in S and the aim is to reconstruct 
this scene from two imperfect sources of information. 

The first of these is that, associated with each pixel, there is a possibly multivariate record 
which provides data on the colour there. It is assumed that, for any particular scene, the records 
follow a known statistical distribution. The second source is not directly quantitative but states 
that pixels close together tend to have the same colour or very similar colours, depending on 
whether colours are unordered or ordered. In this paper, we seek to quantify this second source 
probabilistically, by means of a non-degenerate Markov random field which crudely repre- 
sents the local characteristic of the underlying scene. In principle, such an approach enables the 
two sources to be combined by Bayes' theorem and the true scene to be estimated according 
to standard criteria. For discrete colours, with which this paper is almost wholly concerned, 
the obvious choices are (i) the colouring that has overall maximum probability, given the 

Present address: Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, England. 

? 1986 Royal Statistical Society 0035-9246/86/48259 $2.00 
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Dirty pictures
19861 Image Restoration 275 
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Fig. 3c. ICM reconstruction with / t 1.5: 1.2% 
error rate. 
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Fig. 3d. ICM reconstruction with /3 estimated: 
, = 1.80: 1.10% error rate. 

multi-component records. The results are applied to the classification of land usage and of 
clouds, from satellite data. 

5.4. Block Reconstruction 
In Section 2.6, it was proposed that, instead of choosing ii to maximize P(xi I y, Xs\j) at any 

stage of reconstruction, one might choose k'B to maximize P(G'B I y, xS\B), where B represents a 
small block of pixels in the vicinity of pixel i. In particular, suppose that the Bs form 2 x 2 
blocks of four, these being addressed in a raster scan with overlap allowed between successive 
blocks. At each stage, the block in question must be assigned one of c4 colourings, based on 
four records and, in the case of second-order neighbourhood, 26 direct and diagonal 
adjacencies. With Assumptions I and 2 of Section 2.1 and {p(x)} as in (6), this reduces to 
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Dirty pictures

1986] Image Restoration 265 

local characteristics (Sections 3 and 4), these same fields generally have undesirable large-scale 
properties. In particular, given the level of local dependence we have in mind, realizations of 
gp(x)} on S will usually consist almost entirely of a single colour. Of course, this will not 
generally be true of P(x I y) because of the influence of the records; nevertheless, one might 
prefer a method of reconstruction which is not only computationally undemanding but also 
ignores the large scale deficiencies of {p(x)}. We now describe a scheme which satisfies these 
conditions. 

Suppose that x denotes a provisional estimate of the true scene x* and that our aim is merely 
to update the current colour xi at pixel i in the light of all available information. Then a 
plausible choice is the colour which has maximum conditional probability, given the records y 
and the current reconstruction xS\i elsewhere; that is, the new xi maximizes P(x, I y, X\) with 
respect to xi. It follows from Bayes' theorem and equations (1) and (2) that 

P(xi I y, xS\i) oc f(yi I xi)pi(xi Izai), (5) 

so that implementation is trivial for any locally dependent M.r.f. {p(x)}. When applied to each 
pixel in turn, this procedure defines a single cycle of an iterative algorithm for estimating x*. 

As an initial x, we shall normally adopt the conventional maximum likelihood classifier, 
which ignores geometrical considerations and merely chooses xi to maximize f(yi I xi) at each i 
separately. We then apply the algorithm for a fixed number of cycles or until convergence, to 
produce the final estimate of x*: note that 

P(x I y) = P(Xi I y, Xs\i)P(Xs\i I A 
so that P(x I y) never decreases at any stage and eventual convergence is assured. In practice, 
convergence, to what must therefore be a local maximum of P(x I y), seems extremely rapid, 
with few if any changes occurring after about the sixth cycle. Indeed, it was as an approximation 
to maximum probability estimation that the algorithm was first proposed (Besag, 1983), 
although we no longer view it merely in that light. The algorithm was suggested independently 
by Kittler and Foglein (1984b), who applied it to Landsat data, as did Kiiveri and Campbell 
(1986). Note that its dependence only on the local characteristics of {p(x)} is ensured by the 
rapid convergence. We label the method ICM, representing "iterated conditional modes". 

The actual mechanics of updating may depend on computing environment. Thus, with a 
language such as Fortran, updating is most conveniently implemented as a raster scan. It is 
helpful to vary the raster from cycle to cycle, in order to reduce the small directional effects 
which may otherwise be produced. However, with a matrix language such as APL, it will be 
much faster and more convenient to modify the algorithm and use synchronous updating: that 
is, to update cycle by cycle. This eliminates spurious directional effects but convergence can no 
longer be guaranteed and small oscillations may occur. The partially synchronous scheme, in 
which coding sets of pixels are simultaneously updated, provides a useful compromise. Given 
the ideal of a genuinely parallel system, with a single processor dedicated to each pixel, the 
processors could be allowed to run at their own individual rates and restoration would be 
immediate. 

Finally, as remarked by Peter Green, there is a somewhat incidental link with Section 2.3. 
Apart from the totally synchronous option, which is invalid for the Gibbs sampler, ICM is 
exactly equivalent to instantaneous freezing in simulated annealing! 

2.6. Some Modifications of ICM 
There are several modifications which can be made to the basic version of ICM. A simple 

variant is to work up to the chosen {p(x)}, using a sequence of weaker fields on previous cycles. 
This can have the advantage of not fixing pixel colours too early in the restoration, on the basis 
of the unreliable initial estimate, though it naturally requires a little more iteration. Examples 
are provided in Sections 3 and 5. 
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Iterated conditional modes

True scene (unobservable) x ; observed digital image y .

Recover x by iteratively maximising the posterior local characteristics

p(xi |y , xS\i)

... a ‘Gauss-Seidel’ approach. Empirically exhibits superior performance relative to
(expensive) MAP estimator

argmaxxp(x |y)
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Methodology Markov chain Monte Carlo methods

MCMC: key papers

Spatial statistics and Bayesian computation (with Discussion). Journal of the Royal
Statistical Society B (1993) (with Peter Green).

Bayesian computation and stochastic systems (with Discussion). Statistical Science
(1995) (with Peter Green, David Higdon and Kerrie Mengersen).
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Methodology Markov chain Monte Carlo methods

Contributions to MCMC

partial conditioning (extends multigrid Swendsen-Wang)
randomised proposals (explains adaptive rejection Metropolis sampling)
Langevin-Hastings (MALA)
sequential MCMC prediction
simultaneous credible regions
promotion/adaptation of statistical physics ideas
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Methodology Monte Carlo computation and hypothesis testing

Monte Carlo testing: key papers

Simple Monte Carlo tests for spatial pattern. Applied Statistics (1977) (with Peter Diggle).

Generalized Monte Carlo significance tests. Biometrika (1989) (with Peter Clifford).

Sequential Monte Carlo p-values. Biometrika (1991) (with Peter Clifford).
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Applications

medical imaging
remote sensing
microarrays
agricultural field trials
geographical epidemiology
biostatistics
social networks
ecology, etc.
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Microarrays: key paper

Probabilistic segmentation and intensity estimation for microarray images. Biostatistics
(2006) (with Raphael Gottardo, Matthew Stephens and Alejandro Murua).
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Microarrays

86 R. GOTTARDO ET AL.

In a typical application of cDNA arrays, gene expression patterns between two samples (e.g. a treat-
ment and a control) are compared. The RNA is extracted from both samples and each is labeled with a
different fluorescent dye. Generally, one dye is red, the other green. Next, the RNA samples are mixed
and cohybridized to the probes on the cDNA array, which is then scanned to provide a 16-bit gray-scale
image for each dye. The relative intensity of the dyes in each spot measures the relative abundance of
that particular RNA type in the sample. Several factors, such as the hydrophobicity of the pretreated glass
surface, the humidity as the probe dries, and the speed of drying, induce unequal distribution of probe
material in the spot (Hedge et al., 2000) and can result in spots having irregular shape and size. Figure 1
shows an image from one of the data sets discussed later in the paper; note the evidence of doughnut
shapes in some spots.

Image analysis is required to produce estimates of the foreground and background intensities for both
the red and green dyes for each gene. These estimates are the starting point of any statistical analysis such
as testing for differential expression (Tusher et al., 2001; Efron et al., 2001; Newton et al., 2001; Dudoit
et al., 2002; Gottardo et al., 2003), discriminant analysis (Golub et al., 1999; Tibshirani et al., 2002), and
clustering (Eisen et al., 1998; Tamayo et al., 1999; Yeung et al., 2001). To estimate the intensities, one
first needs to locate the spots on the images and then to classify each pixel either as part of a spot or as
background. Chen et al. (1997) provide an early statistical treatment of this task and Yang et al. (2002)
discuss the effects of different approaches.

Fig. 1. Three blocks of one of the HIV raw images. The whole image contains 12 blocks. Each block is formed by
16 × 40 spots. At the bottom, we have enlarged two portions of the image containing several artifacts not caused by
hybridization of the probes to the slide. Some spots are doughnut shaped with larger intensity on the perimeter of
the spot.
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Raw image from cDNA array from an
HIV experiment: the paper devises and
investigates a probabilistic approach to
simultaneous segmentation and
intensity estimation, implemented using
EM/ICM algorithms
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Agricultural field trials: key papers

Statistical analysis of field experiments using neighbouring plots. Biometrics (1986) (with
Rob Kempton).

Bayesian analysis of agricultural field experiments (with Discussion). Journal of the Royal
Statistical Society B (1999) (with David Higdon).
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Applications Agricultural field trials

Field trials: key ideas

linear models for yield, grounded and informed by well-understood practical context
adjustment for variation in fertility using neighbouring plots
decomposition Y = Fψ + T τ + error
Bayesian formulation, MCMC computation

simplifies interpretation (e.g. ranking, selection)
allows complex formulations
hierarchical t-formulation (outliers, jumps in fertility)
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Field trials
Agricultural Field Experiments 703 

Raw yields 
100I 

Centred variety effects 
A) 10 20 20 

3:(a)) 
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(a)!t\flfrS 
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Fig. 1. El Batan variety trial: yields and additive decompositions into variety, fertility and residual effects under 
(a) Gaussian and (b) hierarchical-t formulations, with the same scale throughout: shaded regions provide 
pointwise 90% credible intervals; locations of varieties 1, 10, 11 and 20 in each replicate are identified 

Table 2. El Batan variety trial: bivariate and marginal posterior distributions of vy 
and v/, in the hierarchical-t formulation 

VY PiPobabilities for the following values of vp,: 

1 2 4 8 16 32 64 

2 0.03 0.04 0.01 0.08 
4 0.13 0.14 0.03 0.01 0.01 0.32 
8 0.10 0.10 0.01 0.01 0.23 

16 0.07 0.05 0.01 0.14 
32 0.06 0.04 0.01 * 0.12 
64 0.06 0.04 0.01 * 0.11 

0.45 0.41 0.07 0.03 0.02 0.01 0.01 

suspiciously large yield in the final replicate and hence is penalized by the t-analysis. This 
analysis also suggests a fall in fertility in the first replicate between varieties 10 and 11, which 
therefore demotes the former and promotes the latter. Variety 20 has one of the lowest yields 
in the final replicate but otherwise performs very well. Its mean is enhanced by the t-analysis 
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Geographical epidemiology: key papers

The detection of clusters in rare diseases. Journal of the Royal Statistical Society A
(1991) (with James Newell).

Bayesian image restoration, with two applications in spatial statistics (with Discussion).
Annals of the Institute of Statistical Mathematics (1991) (with Jeremy York and Annie
Mollié).

Modelling risk from a disease in time and space. Statistics in Medicine (1998) (with Leo
Knorr-Held).
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Space-time analysis of lung cancer incidence
MODELLING RISK FROM A DISEASE IN TIME AND SPACE 2047

Figure 1. Crude annual death rate × 1000 for each county in Ohio

Figure 3 shows the observed mortality rate from lung cancer over time, broken down by gender
and race in the top panel and, ignoring deaths below age 45, by age group in the bottom one.
However, these plots can be misleading. For example, we must not conclude that there is a higher
risk for white than for non-white women, since the di�erence in the mortality rates might be an
artifact of disparities in the age distributions of the two subgroups. Indeed, later we shall see that
this appears to be the case.
Of course, a major risk factor for lung cancer is cigarette consumption and any analysis that

ignores this is highly questionable. Our basic formulation allows for unobserved covariates in each
county but this device is unlikely to be entirely satisfactory here. Although there is no reliable
direct information on smoking behaviour across Ohio, it should help to include a measure of
urbanization in the model, primarily as a surrogate for cigarette consumption but also for other
risk factors associated with urban areas, for example, industrial air pollution. For example, Kafadar
and Tukey19 suggest the logarithm of the population size of the largest city in each county and
compare this favourably with other, more obvious, measures, such as population density, in a
nationwide analysis of deaths from lung cancer. Figure 4 shows a map of the Kafadar–Tukey
(K–T) index for Ohio, based on population data from 1970. The four counties containing the major
cities (Cleveland, on Lake Erie, in the north; Cincinnati, in the southwest; Columbus, approximately

? 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 2045–2060 (1998)

MODELLING RISK FROM A DISEASE IN TIME AND SPACE 2053

Figure 5. Medians and 50, 80 and 95 per cent credible intervals for the overall time trend and for the aggregate
of this with each of the �ve age group e�ects

? 1998 John Wiley & Sons, Ltd. Statist. Med. 17, 2045–2060 (1998)

Disease counts treated as
independent Binomial,
with logit probabilities
modelled as
year+age*time+
gender*race*time+
covariate+county,
with county a Gaussian
intrinsic autoregression
plus noise.
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Markov chains for DNA sequences Markov random graphs for social networks

Constrained Monte Carlo and Some Applications

JULIAN BESAG

Department of Statistics, University of Washington, Seattle, USA (emeritus)

Department of Mathematics, University of Bristol, UK (honorary)

Markov random fields in statistical ecology Markov point processes

1
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Agenda

A statistician plays Sudoku

... and defends p–values in exploratory data analysis.

Simple Monte Carlo p–values.

Examples

Markov chain Monte Carlo (MCMC) p–values.

Applications

MCMC for p–values in multi–dimensional contingency tables

Applications

Mobility and irreducibility in constrained sample spaces.

Applications

Social networks : Markov random graphs : MCMC p–values.

Application

2
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Continuum limits of Gaussian Markov random fields :

resolving the conflict with geostatistics

JULIAN BESAG

Department of Mathematical Sciences, University of Bath, England

emeritus Department of Statistics, University of Washington, Seattle, USA

Joint work with DEBASHIS MONDAL

Department of Statistics, University of Chicago, USA

formerly Department of Statistics, University of Washington

Oxford, 23 October, 2008

1
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Agenda

• Hidden Markov random fields (MRFs) and some applications.

• Geostatistical versus MRF approach to spatial data.

• Describe simplest Gaussian intrinsic autoregression on 2–d rectangular array

and its exact and asymptotic variograms.

• Describe de Wijs process and its exact and approximate variograms.

• Reconcile geostatistics and Gaussian MRFs via regional averages.

• Generalizations and wrap–up.

2
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Wrap up

• Gaussian Markov random fields are alive and well !!

• Precision matrix of Gaussian MRFs sparse ⇒ efficient computation.

• Regional averages of Gaussian MRFs
rapid−→ continuum de Wijs process.

• Reconciliation between Gaussian MRF and original geostatistical formulation.

• Empirical evidence for de Wijs process in agriculture :

P. McCullagh & D. Clifford (2006), “Evidence of conformal invariance for crop

yields”, Proc. R. Soc. A, 462, 2119–2143.

Consistently selects de Wijs within Matérn class of variograms (25 crops !).

• de Wijs process also alive and well and can be fitted via Gaussian MRFs.

• de Wijs process has separate life as Gaussian free field in statistical physics.

54
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Webpage: sustain.bris.ac.uk/JulianBesag/tributes
Email: P.J.Green@bristol.ac.uk
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Honours

1983 RSS Guy medal in Silver
1984 Member of the International Statistical Institute
1991 Fellow of the Institute of Mathematical Statistics
2001 Chancellor’s medal, University of California
2004 Fellow of the Royal Society
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At the helm of his yacht
Annie in 2006
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