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Biography

A brief biography

1945
196568
1968-69
1970-75
1975-89
1989-90
1990-91
1991-2007
2007-09
2010

Born in Loughborough

BSc Mathematical Statistics, Birmingham
Research Assistant to Maurice Bartlett, Oxford
Lecturer in Statistics, Liverpool

Reader (from 1985, Professor), Durham
Visiting professor, U Washington

Professor, Newcastle-upon-Tyne

Professor, U Washington

Visiting professor, Bath

Died in Bristol

Visiting appointments in Oxford, Princeton, Western Australia, ISI New Delhi, PBI
Cambridge, Carnegie-Mellon, Stanford, Newcastle-u-Tyne, Washington, CWI| Amsterdam,

Bristol
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Julian Besag in 1976
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Methodology

@ Spatial statistics

e Modelling, conditional formulations
e Frequentist and Bayesian inference
e Algebra of interacting systems

o Digital image analysis

@ Monte Carlo computation and hypothesis testing
@ Markov chain Monte Carlo methods
@ Exploratory data analysis
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Spatial statistics: Modelling, conditional formulations
Modelling, conditional formulations: key papers

Nearest-neighbour systems and the auto-logistic model for binary data. Journal of the
Royal Statistical Society B (1972).

Spatial interaction and the statistical analysis of lattice systems (with Discussion). Journal
of the Royal Statistical Society B (1974).

On spatial-temporal models and Markov fields. Proceedings of the 10th (1974) European
Meeting of Statisticians (1977).
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Spatial statistics: Modelling, conditional formulations
The 1974 paper in JRSS(B)

Green (Bristol)

Spatial Interaction and the Statistical Analysis of Lattice Systems

By JULIAN BESAG

University of Liverpool

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH SECTION

on Wednesday, March 13th, 1974, Professor J. DURBIN in the Chair]

SUMMARY

The formulation of conditional probability models for finite systems of
spatially interacting random variables is examined. A simple alternative
proof of the Hammersley—Clifford theorem is presented and the theorem is
then used to construct specific spatial schemes on and off the lattice.
Particular emphasis is placed upon practical applications of the models in
plant ecology when the variates are binary or Gaussian. Some aspects of
infinite lattice Gaussian processes are discussed. Methods of statistical
analysis for lattice schemes are proposed, including a very flexible coding
technique. The methods are illustrated by two numerical examples. It is
maintained throughout that the conditional probability approach to the
specification and analysis of spatial interaction is more attractive than the
alternative joint probability approach.

Keywords: MARKOV FIELDS; SPATIAL INTERACTION ; AUTO-MODELS ; NEAREST-NEIGHBOUR
SCHEMES ; STATISTICAL ANALYSIS OF LATTICE SCHEMES; CODING TECHNIQUES;
SIMULTANEOUS BILATERAL AUTOREGRESSIONS; CONDITIONAL PROBABILITY

MODELS
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Spatial statistics: Modelling, conditional formulations
JRSS(B) 1974: the Hammersley—Clifford theorem

The theorem states that “Markov random fields are the same as Gibbs distributions” —
that is, that a multivariate distribution satisfies the Markov random field property if and
only if its log-density is additive over cliques.

Besag gave a simple proof of this, assuming “positivity” — essentially that any combination
of values realisable locally was realisable globally.
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Spatial statistics: Modelling, conditional formulations
JRSS(B) 1974: the Hammersley—Clifford theorem

Proof of theorem. 1t follows from equation (3.2) that, for any xeQ, Q(x)— O(x;)
can only depend upon x; itself and the values at sites which are neighbours of site i.
Without loss of generality, we shall only consider site-1 in detail. We then have, from
equation (3.3),

Q(x)—Q(x1>=x1{Gl(x1)+ 3 X6 0px)t E5 %3 Gryaln Xp X+ oo
2<j<n 2<i<k<sn
+XgXg o Xy Grg, o(X15 X25 005 X))

Now suppose site / (1) is not a neighbour of site 1. Then Q(x)— O(x,) must be
independent of x; for all xe Q. Putting x; = 0 for i1 or /, we immediately see that
Gyy(x, %) = 0 on Q. Similarly, by other suitable choices of x, it is easily seen succes-
sively that all 3-, 4-, ..., n-variable G-functions involving both x; and x; must be null.
The analogous result holds for any pair of sites which are not neighbours of each
other and hence, in general, G;; . can only be non-null if the sites 7,j,...,s form a
clique.

On the other hand, any set of G-functions gives rise to a valid probability distri-
bution P(x) which satisfies the positivity condition. Also since Q(x)— Q(x;) depends
only upon x; if there is a non-null G-function involving both x; and x;, it follows that
the same is true of P(x;|xy, ..., X;_y, X;43, ---» X,). This completes the proof.
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Spatial statistics: Modelling, conditional formulations
Markov random fields
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Spatial statistics: Modelling, conditional formulations
Markov random fields
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Methodology Spatial statistics: Modelling, conditional formulations

Markov random fields
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Methodology Spatial statistics: Modelling, conditional formulations

Markov random fields
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Spatial statistics: Modelling, conditional formulations
Markov random fields = Gibbs distributions
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Spatial statistics: Modelling, conditional formulations
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Spatial statistics: Modelling, conditional formulations
Markov random fields = Gibbs distributions
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Spatial statistics: Modelling, conditional formulations
The Hammersley—Clifford theorem

Many years later, the theorem was superseded by a more complete understanding of
Markov properties in undirected graphical models: we can distinguish Global, Local and
Pairwise Markov properties, and relate all these to the Factorisation property of Gibbs
distributions; in general

F—G=L =P

and under an additional condition implied by positivity they are all equivalent.
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Spatial statistics: Modelling, conditional formulations
Pairwise Markov property

OLO|®
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Spatial statistics: Modelling, conditional formulations
Global Markov property

CLO|®
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Spatial statistics: Modelling, conditional formulations
Other key ideas in the 1974 paper

@ Auto-models

e auto-normal, auto-logistic, etc

o establishes idea that the natural multivariate generalisations of standard univariate
distributions might be based on conditional not marginal distributions having the
assumed form.

@ Inferential methods for MRFs
@ Ecological applications
@ Characterisation of MRFs as equilibria of certain space-time models
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Spatial statistics: Frequentist and Bayesian inference
Inference in spatial systems: key papers

Statistical analysis of non-lattice data. The Statistician (1975).

On the estimation and testing of spatial interaction in Gaussian lattice processes.
Biometrika (1975). (with Pat Moran)

Errors-in-variables estimation for Gaussian lattice schemes. Journal of the Royal
Statistical Society B (1977).

Efficiency of pseudo-likelihood estimation for simple Gaussian fields. Biometrika (1977).
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Spatial statistics: Frequentist and Bayesian inference
Pseudo-likelihood estimation

3.3. A Pseudo-likelihood Technique

Given the previous set-up, perhaps the most naive approach to the esti-
mation of the unknown parameters in the terms p;(¢) would be to take
that vector ¢ which maximizes the quantity

Lu@= 3, In p¥) 3.2

with respect to . Of course, L, is not the true log-likelihood function
for the sample (except in the trivial case of complete independence) and
yet its maximization, especially in view of the coding technique, would
seem to present an intuitively plausible method of estimation. That this
intuition can be given a theoretical foundation will be seen later on. Note
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Spatial statistics: Frequentist and Bayesian inference
Pseudo-likelihood estimation

Thus in a Markov random field x, indexed by sites i € S, with parameter ¢, the maximum
pseudo-likelihood estimator of ¢ is that maximising

[T p(xilxs\i )

i€eS

... evidently not the joint probability of anything! It is motivated by Besag’s previous
‘coding technique’ estimator where the product is restricted to sites i that are not
neighbours of each other, when it is a straightforward conditional likelihood.

It has proved a powerful and durable idea in various contexts with dependent data,
notching up now 733 citations.
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Spatial statistics: Frequentist and Bayesian inference
Pseudo-likelihood estimation

We now return to the general problem of providing some mathematical
justification for maximum pseudo-likelihood estimators. The only property
which will be established is that of consistency and, as such, we shall
have to admit a conceptual passage of » to the infinite limit. How relevant
this is to spatial applications, where » is usually fixed, is a matter for
debate; for example, the imagination palls at the thought of extending the
counties of Eire to an infinite set! Nevertheless, the property of consistency
might be thought of as a minimal statistical requirement. We shall sketch
its proof’; a rigorous treatment would, for example, require some considera-
tion of the system boundary as » increases.
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Spatial statistics: Algebra of interacting systems
Algebra of interacting systems: key papers

On a system of two-dimensional recurrence relations. Journal of the Royal Statistical
Society B (1981).

On conditional and intrinsic autoregressions. Biometrika (1995) (with Charles
Kooperberg).

Markov random fields with higher-order interactions. Scandinavian Journal of Statistics
(1998) (with Hakon Tjelmeland).

A recursive algorithm for Markov random fields. Biometrika (2002) (with Francesco
Bartolucci).

First-order intrinsic autoregressions and the de Wijs process. Biometrika, 92, 909-920
(2005) (with Debashis Mondal).
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Spatial statistics: Algebra of interacting systems
Intrinsic autoregression and the de Wijs process

First-order intrinsic autoregressions and the de Wijs process

By JULIAN BESAG anp DEBASHIS MONDAL

Let {X,,:u,ve Z =0, £1,...} be a homogeneous first-order intrinsic autoregression
on the two-dimensional rectangular lattice 22 (Kiinsch, 1987; Besag & Kooperberg, 1995;
Rue & Held, 2005, Ch. 3), with generalised spectral density function

flo,m=x(1-2Bcosw—2ycosn)~" (w,n€(~mx]) (1)

and conditional expectation structure
EXypl )= BXuz10F Xus1,0) + VYXup—1 + Xupr1)y Var(X,,l...)=x, (2)
where B, 7>0 and f +y =3. Note that we use the term ‘order’ to identify the neighbour-
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Methodology Spatial statistics: Algebra of interacting systems

Intrinsic autoregression and the de Wijs process

Green (Bristol)

‘We close this section with some brief remarks about the de Wijs process (de Wijs, 1951,
1953; Matheron, 1971), a generalised continuum formulation that takes nonzero values
with respect to contrasts between averages over areas rather than values at points. The
restriction to averages is relevant in practice, where ‘point’ measurements are generally
idealisations. The de Wijs process is Gaussian and Markovian and its variogram intensity
increases as the logarithm of distance, which underlies its invariance to conformal trans-
formations and its physical appeal as a basic model. To be more specific, the de Wijs
process {Y,} is a generalised Gaussian Markov process indexed by functions ¢ on the
plane that integrate to zero and that give rise to the well-defined variance formula

var(Y,) = — ” log||x — yllp(x)p(y) dx dy.

In particular, let ¢(x)=1,(x)/|A| — 15(x)/|Bl, where A and B are two regions of the
plane with respective areas |4| >0 and |B| > 0. Then we interpret Y, as the difference in
the average values Y, and Y of the de Wijs process over 4 and B. These averages
correspond to an intrinsic process with a single degeneracy and generalised variogram
defined by v, =3 var(Y, — Y3). Note that the spectral density function of the de Wijs
process is inversely proportional to w? + n% We return to this in § 42 together with some
generalisations.
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Methodology Spatial statistics: Algebra of interacting systems

Intrinsic autoregression and the de Wijs process
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Methodology

Intrinsic autoregression and the de Wijs process

Spatial statistics: Algebra of interacting systems

Green (Bristol)

Julian Besag FRS, 1945-2010

‘fj \ CQ/
Dublin, August 2011 30/57



Methodology Spatial statistics: Algebra of interacting systems

Intrinsic autoregression and the de Wijs process
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Methodology Spatial statistics: Algebra of interacting systems

Intrinsic autoregression and the de Wijs process
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Spatial statistics: Algebra of interacting systems
Intrinsic autoregression and the de Wijs process

Integrated de Wijs process Intrinsic autoregression

... provides a rigorous link between geostatistical models and (intrinsic) lattice Markov
random fields, explaining empirical robustness of discrete-space formulations to changes
of scale.
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Spatial statistics: Digital image analysis
Digital image analysis: key papers

On the statistical analysis of dirty pictures (with Discussion). Journal of the Royal
Statistical Society B (1986).

Towards Bayesian image analysis. Journal of Applied Statistics (1989).

Bayesian image restoration, with two applications in spatial statistics (with Discussion).
Annals of the Institute of Statistical Mathematics (1991) (with Jeremy York and Annie
Mollié)
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Spatial statistics: Digital image analysis
The 1986 paper in JRSS(B)

On the Statistical Analysis of Dirty Pictures

By JULIAN BESAG
University of Durham, U.K.

[Read before the Royal Statistical Society, at a meeting organized by the Research Section on Wednesday,
May 7th, 1986, Professor A. F. M. Smith in the Chair]

SUMMARY

A continuous two-dimensional region is partitioned into a fine rectangular array of sites or
“pixels”, each pixel having a particular “colour” belonging to a prescribed finite set. The
true colouring of the region is unknown but, associated with each pixel, there is a possibly
multivariate record which conveys imperfect information about its colour according to a
known statistical model. The aim is to reconstruct the true scene, with the additional
knowledge that pixels close together tend to have the same or similar colours. In this paper,
it is assumed that the local characteristics of the true scene can be represented by a non-
degenerate Markov random field. Such information can be combined with the records by
Bayes’ theorem and the true scene can be estimated according to standard criteria. However,
the computational burden is enormous and the reconstruction may reflect undesirable large-
scale properties of the random field. Thus, a simple, iterative method of reconstruction is
proposed, which does not depend on these large-scale characteristics. The method is
illustrated by computer simulations in which the original scene is not directly related to the
assumed random field. Some complications, including parameter estimation, are discussed.
Potential applications are mentioned briefly.
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Methodology Spatial statistics: Digital image analysis

Dirty pictures

Green (Bristol)

Fig. 3a. True six-colour scene: 64 x 64.

Fig. 3c. ICM reconstruction with f 1 1.5: 1.2% Fig 3d. ICM reconstruction with f estimated:
error rate. B = 1.80: 1.1% error rate.
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Methodology Spatial statistics: Digital image analysis

Dirty pictures

Green (Bristol)

Suppose that X denotes a provisional estimate of the true scene x* and that our aim is merely
to update the current colour %; at pixel i in the light of all available information. Then a
plausible choice is the colour which has maximum conditional probability, given the records y
and the current reconstruction Xg; elsewhere; that is, the new %; maximizes P(x;| y, %5, with
respect to x;. It follows from Bayes’ theorem and equations (1) and (2) that

P(x;y, *sn) oc f(yil x)pi(x; | X (5)

so that implementation is trivial for any locally dependent M.r.f. {p(x)}. When applied to each
pixel in turn, this procedure defines a single cycle of an iterative algorithm for estimating x*.

As an initial %, we shall normally adopt the conventional maximum likelihood classifier,
which ignores geometrical considerations and merely chooses X; to maximize f(y;| x;) at each i
separately. We then apply the algorithm for a fixed number of cycles or until convergence, to
produce the final estimate of x*: note that

P(x|y) = P(x;|y, xsw)P(Xst),

so that P(%|y) never decreases at any stage and eventual convergence is assured. In practice,
convergence, to what must therefore be a local maximum of P(x|y), seems extremely rapid,
with few if any changes occurring after about the sixth cycle. Indeed, it was as an approximation
to maximum probability estimation that the algorithm was first proposed (Besag, 1983),
although we no longer view it merely in that light. The algorithm was suggested independently
by Kittler and Foglein (1984b), who applied it to Landsat data, as did Kiiveri and Campbell
(1986). Note that its dependence only on the local characteristics of {p(x)} is ensured by the
rapid convergence. We label the method ICM, representing “iterated conditional modes”.
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Spatial statistics: Digital image analysis
lterated conditional modes

True scene (unobservable) x; observed digital image y.
Recover x by iteratively maximising the posterior local characteristics

p(xily, Xs\i)

... a ‘Gauss-Seidel’ approach. Empirically exhibits superior performance relative to
(expensive) MAP estimator

argmax, p(x|y)
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Markov chein Monte Carlo methods
MCMC: key papers

Spatial statistics and Bayesian computation (with Discussion). Journal of the Royal
Statistical Society B (1993) (with Peter Green).

Bayesian computation and stochastic systems (with Discussion). Statistical Science
(1995) (with Peter Green, David Higdon and Kerrie Mengersen).
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Contributions to MCMC

partial conditioning (extends multigrid Swendsen-Wang)

randomised proposals (explains adaptive rejection Metropolis sampling)
Langevin-Hastings (MALA)

sequential MCMC prediction

simultaneous credible regions

promotion/adaptation of statistical physics ideas
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Monte Carlo computation and hypothesis testing
Monte Carlo testing: key papers

Simple Monte Carlo tests for spatial pattern. Applied Statistics (1977) (with Peter Diggle).
Generalized Monte Carlo significance tests. Biometrika (1989) (with Peter Clifford).

Sequential Monte Carlo p-values. Biometrika (1991) (with Peter Clifford).
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Applications

medical imaging

remote sensing
microarrays

agricultural field trials
geographical epidemiology
biostatistics

social networks

ecology, etc.
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s
Microarrays: key paper

Probabilistic segmentation and intensity estimation for microarray images. Biostatistics
(2006) (with Raphael Gottardo, Matthew Stephens and Alejandro Murua).
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Applications Microarrays

Microarrays
: s Y 13 °;, Raw image from cDNA array from an
gt $ 5t HIV experiment: the paper devises and
. investigates a probabilistic approach to
sisee : simultaneous segmentation and
. 3 intensity estimation, implemented using
$i,0ie 3 EM/ICM algorithms
s o0 '@
L]
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Agricultural feld tials
Agricultural field trials: key papers

Statistical analysis of field experiments using neighbouring plots. Biometrics (1986) (with
Rob Kempton).

Bayesian analysis of agricultural field experiments (with Discussion). Journal of the Royal
Statistical Society B (1999) (with David Higdon).
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Agricultural feld tials
Field trials: key ideas

@ linear models for yield, grounded and informed by well-understood practical context
@ adjustment for variation in fertility using neighbouring plots
@ decomposition Y = Fiy + T7 + error

@ Bayesian formulation, MCMC computation

o simplifies interpretation (e.g. ranking, selection)
o allows complex formulations
e hierarchical t-formulation (outliers, jumps in fertility)
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pplications Agricultural field trials

Field trials

Raw yields ,

F] ..' H "
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Centred variety effects
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Fig. 1. El Batan variety trial: yields and additive decompositions into variety, fertility and residual effects under

(a) Gaussian and (b) hierarchical-t formulations, with the same scale throughout: shaded regions provide
pointwise 90% credible intervals; locations of varieties 1, 10, 11 and 20 in each replicate are identified
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Applications Geographical epidemiology

Geographical epidemiology: key papers

The detection of clusters in rare diseases. Journal of the Royal Statistical Society A
(1991) (with James Newell).

Bayesian image restoration, with two applications in spatial statistics (with Discussion).

Annals of the Institute of Statistical Mathematics (1991) (with Jeremy York and Annie
Mollié).

Modelling risk from a disease in time and space. Statistics in Medicine (1998) (with Leo
Knorr-Held).
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Geographical epidemiology
Space-time analysis of lung cancer incidence

overat g agegroup 1

Disease counts treated as
independent Binomial,
with logit probabilities
modelled as
yeart+agextime+
gender*racextime+
covariate+t+county,
with county a Gaussian
intrinsic autoregression
plus noise.

sgogoup2 sgogroup 3

agogroup & 9001000 5

054 to 0.60
048 10 0.54
042 t0 0.48
036 10 0.42
030 to 0.36

024 0 0.30
018 to 0.24

Figure 1. Crude annual death rate x 1000 for each county in Ohio
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Markov chains for DNA sequences Markov random grapl
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Constrained Monte Carlo and Some Applications

JULIAN BESAG

Department of Statistics, University of Washington, Seattle, USA (emeritus)

Department of Mathematics, University of Bristol, UK (honorary)

Markov random fields in statistical ecology Markov point processes

1
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Last seminars

Green (Bristol)

Agenda
A statistician plays Sudoku
. and defends p—values in exploratory data analysis.

Simple Monte Carlo p—values.
Examples

Markov chain Monte Carlo (MCMC) p—values.
Applications

MCMC for p-values in multi-dimensional contingency tables
Applications

Mobility and irreducibility in constrained sample spaces.
Applications

Social networks: Markov random graphs: MCMC p—values.

Application

2
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Continuum limits of Gaussian Markov random fields :

resolving the conflict with geostatistics

JULIAN BESAG
Department of Mathematical Sciences, University of Bath, England

emeritus Department of Statistics, University of Washington, Seattle, USA

Joint work with DEBASHIS MONDAL

Department of Statistics, University of Chicago, USA

formerly Department of Statistics, University of Washington

Oxford, 23 October, 2008
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Last seminars

Agenda

Hidden Markov random fields (MRFs) and some applications.

Geostatistical versus MRF approach to spatial data.

Describe simplest Gaussian intrinsic autoregression on 2-d rectangular array

and its exact and asymptotic variograms.

Describe de Wijs process and its exact and approximate variograms.

Reconcile geostatistics and Gaussian MRFs via regional averages.

Generalizations and wrap—up.
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Last seminars

Last seminars

Green (Bristol)

‘Wrap up

Gaussian Markov random fields are alive and well!!

Precision matrix of Gaussian MRFs sparse = efficient computation.

Regional averages of Gaussian MRFs 2P continuum de ‘Wijs process.

Reconciliation between Gaussian MRF and original geostatistical formulation.

Empirical evidence for de Wijs process in agriculture :
P. McCullagh & D. Clifford (2006), “Evidence of conformal invariance for crop
yields”, Proc. R. Soc. A, 462, 2119-2143.

Consistently selects de Wijs within Matérn class of variograms (25 crops!).

de Wijs process also alive and well and can be fitted via Gaussian MRFs.

de Wijs process has separate life as Gaussian free field in statistical physics.
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@ Webpage: sustain.bris.ac.uk/JulianBesag/tributes
@ Email: P.J.Green@bristol.ac.uk
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RSS Guy medal in Silver

Member of the International Statistical Institute
Fellow of the Institute of Mathematical Statistics
Chancellor's medal, University of California
Fellow of the Royal Society

Honours
1983
1984
1991
2001
2004
Green (Bristol)
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At the helm of his yacht
Annie in 2006
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