
Bayesian wavelet estimators in nonparametric
regression

Natalia Bochkina

University of Edinburgh

University of Bristol - Lecture 1 -1-



Outline

Lecture 1. Classical and Bayesian approaches to estimation in nonparametric

regression

1. Classical estimators

• Kernel estimators

• Orthogonal series estimators

• Other estimators (local polynomials, spline estimators etc)

2. Bayesian approach

• Prior on coefficients in an orthogonal basis

• Gaussian process priors

• Other prior distributions
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• Lower bounds
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1. Separable and non-separable function estimators
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Examples of nonparametric models and problems

• Estimation of a probability density

Let X1, . . . , Xn ∼ F iid, distribution F is absolutely continuous with respect

to the Lebesgue measure μ on R.

Aim: estimate the unknown density p(x) = dF
dμ .

• Nonparametric regression

Assume pairs of random variables (X1, Y1), . . . , (Xn, Yn) are such that

Yi = f(Xi) + εi, Xi ∈ [0, 1],

where E(εi) = 0 for all i. We can write f(x) = E(Yi | Xi = x).

Unknown function f : [0, 1] → R is called the regression function.

The problem of nonparametric regression is to estimate unknown function f .

We focus on the nonparametric regression problem, large sample properties.
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Examples of nonparametric models and problems (cont)

• White noise model

This is an idealised model that provides an approximation to the nonparametric

regression model. Consider the following stochastic differential equation:

dY (t) = f(t)dt+
1√
n
dW (t), t ∈ [0, 1],

where W is a standard Wiener process on [0, 1], the function f is an unknown

function on [0, 1], and n is an integer. It is assumed that a sample path

{Y (t), 0 ≤ t ≤ 1} of the process Y is observed.

The statistical problem is to estimate the unknown function f .

First introduced in the context of nonparametric estimation by Ibragimov and

Hasminskii (1977, 1981)

Formally asymptotic equivalence was proved by Brown and Low (1996).

An extension to the multivariate case and random design regression was obtained

by Reiss (2008).
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Parametric vs nonparametric estimation

1. Parametric estimation

If we know a priori, that unknown f (regression function or density function) belongs

to a parametric family {g(x, θ) : θ ∈ Θ}, where g(·, ·) is a given function, and

Θ ⊂ R
k (k is fixed, independent of n), then estimation of f is equivalent to

estimation of the finite-dimensional parameter θ.

Examples: 1. Density p is normal N (a, σ2), unknown parameter

θ = (a, σ2) ∈ Θ = R × R+.

2. Regression function f(x) is linear: f(x) = ax+ b, θ = (a, b) ∈ Θ = R
2.

If such a prior information about f is not available we deal with a nonparametric

problem.
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Parametric vs nonparametric estimation

2. Nonparametric estimation

An ill-posed problem, hence usually additional prior assumptions on f are used.

Direct assumption: f belongs to some “massive” class F of functions. For example,

F can be the set of all the continuous functions on R or the set of all differentiable

functions on R.

Tuning parameters of the estimators considered below are chosen to achieve best

performance in the specified class of functions.

Indirect assumptions are also used, e.g. via penalisation or prior distribution on f in

Bayesian approach.
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Nonparametric regression estimators

1. Kernel estimators.

Density estimation: X1, . . . , Xn - iid random variables with (unknown) density

p(x) wrt Lebesgue measure on R.

The corresponding distribution function is F (x) =
∫ x

−∞ p(t)dt.

The empirical distribution function

F̂n(x) =
1
n

n∑
i=1

I(Xi ≤ x),

where I(A) denotes the indicator function of set A. By the strong law of large

numbers, we have

F̂n(x) → F (x), ∀x ∈ R,

almost surely as n→ ∞. Therefore, F̂n(x) is a consistent estimator of F (x) for

every x ∈ R. How can we estimate the density p?
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Kernel density estimators (cont)

One of the first intuitive solutions is based on the following argument. For sufficiently

small h > 0 we can write an approximation

p(x) = F ′(x) ≈ F (x+ h) − F (x− h)
2h

.

Replacing F by F̂n, we define

p̂R
n (x) =

F̂n(x+ h) − F̂n(x− h)
2h

which is called Rosenblatt estimator. It can be rewritten in the form

p̂R
n (x) =

1
2nh

n∑
i=1

I(x− h < Xi ≤ x+ h) =
1
nh

n∑
i=1

K0

(
Xi − x

h

)
,

where K0(x) = 1
2I(−1 < x ≤ 1).

University of Bristol - Lecture 1 -13-



Kernel density estimators (cont)

A simple generalisation of the Rosenblatt estimator is given by

p̂n(x) =
1
nh

n∑
i=1

K

(
Xi − x

h

)
,

where K : R → R is an integrable function satisfying
∫
K(u)du = 1. Such a

function K is called a kernel and the parameter h is called a bandwidth of the

estimator p̂n(x). The function p̂n(x) is called the kernel density estimator or the

Parzen-Rosenblatt estimator.

Further reading: B. Silverman (1986) Density estimation for statistics and data

analysis. Wiley.

Tuning parameters: bandwidth h and kernel K .
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Kernel estimators for regression function

Nonparametric regression model:

Yi = f(Xi) + εi, i = 1, . . . , n,

where (Xi, Yi) are iid pairs, E|Yi| <∞, f(x) = E(Yi | Xi = x) - regression

function to be estimated.

Given a kernel K and a bandwidth h, one can construct various kernel estimators

for nonparametric regression similar to those for density estimation. The most

celebrated one is the Nadaraya - Watson estimator.
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Motivation for Nadaraya - Watson estimator

Suppose (X,Y ) has density p(x, y) with respect to the Lebesgue measure and

p(x) =
∫
p(x, y)dy > 0. Then

f(x) = E(Y |X = x) =
∫
yp(y | x)dy
p(x)

=
∫
yp(x, y)dy
p(x)

.

If we replace here p(x, y) by its kernel estimator p̂n(x, y):

p̂n(x, y) =
1
nh2

n∑
i=1

K

(
Xi − x

h

)
K

(
Yi − y

h

)
,

and use the kernel estimator p̂n(x) instead of p(x), if kernelK is of order 1, we

obtain Nadaraya-Watson estimator:

f̂NW
n (x) =

∑n
i=1 YiK

(
Xi−x

h

)∑n
i=1K

(
Xi−x

h

) , if

n∑
i=1

K

(
Xi − x

h

)
�= 0,

and f̂NW
n (x) = 0 otherwise.
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Nadaraya-Watson estimator is linear

The Nadaraya-Watson estimator can be represented as a weighted sum of Y i:

f̂NW
n (x) =

n∑
i=1

YiW
NW
ni (x),

where the weights are given by

WNW
ni (x) =

K
(

Xi−x
h

)∑n
i=1K

(
Xi−x

h

)I ( n∑
i=1

K

(
Xi − x

h

))
�= 0.

Definition 1. An estimator f̂n(x) of f(x) is called a linear nonparametric

regression estimator if it can be written in the form

f̂n(x) =
n∑

i=1

YiWni(x)

where the weights Wni(x) = Wni(x,X1, ..., Xn) depend only on n, i, x and

the values X1, . . . , Xn.

Typically,
∑n

i=1Wni(x) = 1 for all x (or for almost all x wrt Lebesgue measure).
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Nadaraya - Watson estimator (cont)

If density p(x) of Xi is known, we can use it instead of p̂n(x), then we obtain a

different kernel estimator:

f̂NW
n (x) =

1
nhp(x)

n∑
i=1

YiK

(
Xi − x

h

)
and, in case of uniform design (Xi ∼ U [0, 1]),

f̂NW
n (x) =

1
nh

n∑
i=1

YiK

(
Xi − x

h

)
.

This estimator is also applicable for the regular fixed design xi = i/n.
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Other kernels

• K(u) = (1 − |u|)I(|u| ≤ 1) - triangular kernel

• K(u) = 3
4 (1 − u2)I(|u| ≤ 1) - parabolic, or Epanechnikov kernel

• K(u) = 1√
2π
e−u2/2 - Gaussian kernel

• K(u) = 1
2e

−|u|/√2 sin(|u|/√2 + π/4) - Silverman kernel.
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Local polynomial estimators

If the kernel K takes only nonnegative values, the Nadaraya-Watson estimator

f̂NW
n satisfies

f̂NW
n (x) = arg min

θ∈R

{
n∑

i=1

(Yi − θ)2K
(
Xi − x

h

)}

Thus f̂NW
n is obtained by a local constant least squares approximation of the

outputs Yi.

Local polynomial least squares approximation: replace constant θ by a polynomial

of given degree k. If ∃f (k), then for z sufficiently close to x we may write

f(z) ≈ f(x)+f ′(x)(z−x)+ . . .+
f (k)(x)
k!

(z−x)k = θT (x)U
(
z − x

h

)
,

where

U(u) = (1, u, u2/2!, . . . , uk/k!)T , θ(x) = (f(x), f ′(x)h, f ′′(x)h2, . . . , f (k)(x)hk)T .

University of Bristol - Lecture 1 -20-



Local polynomial estimators

Definition 2. Let K : R → R be a kernel, h > 0 be a bandwidth, and k > 0 be

an integer. A vector θ(x) ∈ Rk+1 defined by

arg min
θ∈Rk+1

{
n∑

i=1

[
Yi − θT (x)U

(
z − x

h

)]2
K

(
Xi − x

h

)}

is called a local polynomial estimator of order k of f(x). The statistic

f̂n(x) = UT (0)θ̂n(x)

is called a local polynomial estimator of order k.
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2. Projection estimators (orthogonal series estimators)

Nonparametric regression model:

Yi = f(xi) + εi, i = 1, . . . , n,

where Eεi = 0, Eε2i <∞.

Assume xi = i/n, f ∈ L2[0, 1].

Take some orthonormal basis {ϕk(x)}∞k=0 of L2[0, 1]. Then, for any

f ∈ L2[0, 1], ∃{θk}∞k=0:

f(x) =
∞∑

k=0

θkϕk(x),

and θk =
∫ 1

0
f(x)ϕk(x)dx.

Projection estimation of f is based on a simple idea: approximate f by its projection∑N
k=0 θkϕk(x) on the linear span of the first N + 1 functions of the basis, and

replace θk by their estimators.
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Projection estimators

If Xi are scattered over [0, 1] in a sufficiently uniform way, which happens, e.g., in

the case Xi = i/n, the coefficients θk are well approximated by the sums
1
n

∑n
i=1 f(Xi)ϕk(Xi).

Replacing in these sums the unknown quantities f(Xi) by the observations Yi we

obtain the following estimators of θk :

θ̂k =
1
n

n∑
i=1

Yiϕk(Xi).

Definition 3. Let N ≥ 1 be an integer. The statistic

f̂N
n (x) =

N∑
k=0

θ̂kϕk(x)

is called a projection estimator (or an orthogonal series estimator) of the regression

function f at the point x.

Choice of parameterN corresponds to choosing smoothness of f .
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Projection estimators (cont)

Note that f̂N
n (x) is a linear estimator, since we may write it in the form

f̂N
n (x) =

n∑
i=1

YiWni(x)

with

Wni(x) =
1
n

N∑
k=0

ϕk(x)ϕk(Xi)

Examples:

1. Fourier basis: ϕ2k(x) = 1, ϕ2k(x) =
√

2 cos(2πkx),

ϕ2k+1(x) =
√

2 sin(2πkx), k = 1, 2, . . ., x ∈ [0, 1] (Tsybakov, 2009).

2. A wavelet basis (Vidakovic, 1999)

3. An orthogonal polynomial basis: ϕk(x) = (x− a)k , k ≥ 0 (more commonly

used in the context of density estimation)
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Generalisation to arbitrary Xis

Define vectors θ = (θ0, . . . , θN )T and ϕ(x) = (ϕ0(x), . . . , ϕN(x))T .

The least squares estimator θ̂LS of the vector θ is defined as follows:

θ̂LS = arg min
θ∈RN

n∑
i=1

(Yi − θTϕ(Xi))2.

If the matrix

B =
n∑

i=1

ϕ(Xi)ϕT (Xi)

is invertible, we can write

θ̂LS = B−1
n∑

i=1

Yiϕ(Xi).

Then the nonparametric least squares estimator of f(x) is given by

f̂LS
n,N (x) = ϕT (x)θ̂LS .
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Wavelet basis

Wavelet basis with periodic boundary correction on [0, 1] is

{φLk, k = 0, . . . , 2L − 1; ψjk, j = L,L+ 1, . . . , k = 0, . . . , 2j − 1},
where φjk(x) = 2j/2φ(2jx− k), ψjk(x) = 2j/2ψ(2jx− k),

φ(x) is a scaling function, ψ(x) is a wavelet function such that∫
φ(x)dx = 1,

∫
ψ(x)dx = 0.

Then, any f ∈ L2[0, 1] can be decomposed in the wavelet basis:

f(x) =
2L−1∑
k=0

θkφLk(x) +
∞∑

j=L

2j−1∑
k=0

θjkψjk(x),

and θ = {θk, θjk} is a set of wavelet coefficients. [Meyer, 1990]

Wavelets (φ, ψ) are said to have regularity s if they have s derivatives and ψ has s

vanishing moments (
∫
xkψ(x)dx = 0 for integer k ≤ s).
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Examples of wavelet functions
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(b) Daubechies wavelet,

s = 2
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(c) Daubechies wavelet, s = 4

Localisation in time and frequency domains - sparse wavelet representation of most

functions.
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Daubechies wavelet transform, s = 8
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Discrete wavelet transform (DWT)

Applying discretised wavelet transform to data yields

djk = wjk + εjk, L ≤ j ≤ J − 1, k = 0, . . . , 2j − 1,

cLk = uLk + εk, k = 0, . . . , 2L − 1,

where djk and cLk are discrete wavelet and scaling coefficients of observations

(yi), and εjk and εk are coefficients of the discrete wavelet transform of noise

(εi). If εi ∼ N(0, σ2) independent, then εjk ∼ N(0, σ2) independent.

Connection to θjk :

θjk =
∫ 1

0

f(x)ψjk(x)dx ≈ 1
n

n∑
i=1

ψjk(i/n)f(i/n) =
1√
n

(Wfn)(jk) =
wjk√
n

=: θ̃jk,

where W is orthonormal n× n matrix, fn = (f(1/n), . . . , f(1)).

Also, for yjk = djk/
√
n and yk = cL,k/

√
n, and for Gaussian noise,

yjk ∼ N (θ̃jk, σ
2/n), yk ∼ N (θ̃k, σ

2/n).
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Smoothness

Fourier series - basis of Sobolev spacesW r
p ∩ L2, p ∈ [1,∞], r > 0:

f ∈W r
p ⇔

∞∑
k=1

|ar
kθk|p <∞,

where ak = k for even k and ak = k − 1 for odd k.

Wavelet series - basis of Besov spacesBr
p,q ∩ L2), p, q ∈ [1,∞], r > 0:

f ∈ Br
p,q ⇔

⎡⎣2L−1∑
k=0

|θk|p
⎤⎦1/p

+

⎡⎢⎣ ∞∑
j=L

2jq(r+1/2−1/p)

⎛⎝2j−1∑
k=0

|θjk|p
⎞⎠p/q

⎤⎥⎦
1/q

<∞

provided regularity s of wavelet transform: s > r > 0 (Donoho and Johnstone,

1998, Theorem 2).

Embeddings: Br
2,2 = W r

2 .
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Regularisation

Penalised least squares estimator of f :

f̂ pen
n = arg min

f∈F

n∑
i=1

(Yi − f(xi))2 + λpen(f)

where pen(f) is a penalty function, λ > 0 is regularisation parameter.

Example: pen(f) =
∫
[f ′′(x)]2dx, leads to a cubic spline estimator (Silverman,

1985).

(see Green and Silverman, 1994, for more details).
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Regularisation

Penalisation can be done on the coefficients of f in an orthonormal basis:

θ̂pen
n = arg min

θ∈RN+1

N∑
k=0

(yk − θk)2 + λpen(θ)

Examples: 1. pen(θ) = ||θ||22: θ̂k = 1
1+λyk - Tikhonov regularisation, ridge

regression.

2. pen(θ) = ||θ||1: for large enough λ, θ̂ is sparse, lasso regression (Tibshirani,

1996).

Estimator f̂ pen
n (θ̂pen

n ) coincides with MAP (maximum a posteriori) Bayesian

estimator.
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Bayesian estimators

Likelihood:

Yi = f(Xi) + εi.

Common ways of specifying a prior distribution on a set of functions F :

• On coefficients in some (orthonormal) basis, e.g. wavelet basis.

• Directly on F , e.g. in terms of Gaussian processes

Inference is based on the posterior distribution (f | Y ):

p(f minY ) =
p(y | f)p(f)

p(Y )
.

A point summary of the posterior distribution gives f̂ (e.g. posterior mean, median,

mode); can also obtain credibility bands for f̂ .
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Bayesian projection estimators

Decomposition in some orthonormal basis:

f(x) =
∞∑

k=0

θkϕk(x).

Likelihood under the (continuous time) white noise model:

Yk ∼ N (θk, σ
2/n) independent

Under the nonparametric regression model: yk ∼ N (θ̃k, σ
2/n), independent.

Prior on coefficients θ:

θk ∼ pk(·), k = 0, . . . , N,

and P(θk = 0) = 1 for k > N .

Prior distributions πk can be determined by a priori smoothness assumption.

Inference is based on the posterior distribution θ | y: θ̂k can be posterior mean,

median, mode etc; variability of θk.
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Example: posterior mode (MAP) estimator

Suppose we have Gaussian likelihood: yk ∼ N (θk, σ
2/n), and prior densities

θk ∼ pk(·), k = 0, . . . , N .

The corresponding posterior density of θ is

f(θ | y) ∝ exp

{
N∑

k=0

[− n

2σ2
(yk − θk)2 + log pk(θk)]

}
.

Posterior mode (MAP) estimator:

θ̂MAP
n = arg max

θ∈RN+1
f(θ | y) = arg min

θ∈RN+1

N∑
k=0

(yk − θk)2 + λnpen(θ)],

where pen(θ) = −∑N
k=0 log pk(θk).

For example, for a Gaussian prior θk ∼ N (0, τ2) iid, pen(θ) = ||θ||22/2τ2 -

corresponds to ridge regression estimator, and for a double exponential prior

pk(θk) = τ
2 e

−τ |θk| iid, pen(θ) = τ ||θ||1 - corresponds to lasso regression.
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Choice of prior distribution for Bayesian wavelet estimators

Wavelet decomposition:

f(x) =
2L−1∑
k=0

θkφLk(x) +
∞∑

j=L

2j−1∑
k=0

θjkψjk(x),

Wavelet representation of most functions is sparse, motivating the following prior

distribution for wavelet coefficients:

θjk ∼ (1 − πj)δ0(·) + πjhj(·),
where hj(·) is the prior density function of non-zero wavelet coefficients, and

πj = P(θjk �= 0).

Scaling coefficients: θk ∼ 1 - noninformative prior.
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Prior distribution of wavelet coefficients

h - normal: Clyde and George (1998), Abramovich, Sapatinas and Silverman

(1998), etc.

h - double exponential: h(x) = 1
2e

−|x| - by Vidakovic (1998), Clyde and George

(1998), Johnstone and Silverman (2005).

h - t distribution: Bochkina and Sapatinas (2005), Johnstone and Silverman (2005).

What is corresponding a priori regularity of f?
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A priori regularity

Studied by Abramovich et al. (1998) for normal h and πj = min(1, cπ2−βj),

τj = cτ2−αj , α, β � 0, cτ , cπ > 0.

Generalised to arbitrary h, πj and τj by Bochkina (2002)

[PhD thesis, University of Bristol]

Example: τj = cτ2−αj , πj = min(1, cπ2−βj).

Expected number of non-zero wavelet coefficients is EN =
∑∞

j=j0
2jπj .

Can specify πj in such a way that:

EN = ∞: πj = min(1, Cπ2−βj) with β ≤ 1;

EN <∞: πj = min(1, Cπ2−βj) with β > 1.

Consider case β ∈ (0, 1].
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Assumptions on distribution H

Suppose ξ has distribution H .

1. 0 � β < 1, 1 � p <∞, 1 � q � ∞: assume that E|ξ|p <∞. If q <∞,

we also assume that E|ξ|q <∞.

2. 0 � β < 1, p = ∞, 1 � q � ∞: assume that distribution of |ξ| has tail of

one of the following types:

(a) 1 −H(x) +H(−x) = clx
−l[1 + o(1)] as x→ +∞, l > 0, cl > 0; if

q <∞, assume that l > q;

(b) 1 −H(x) +H(−x) = cme
−(λx)m

[1 + o(1)] as x→ +∞, m > 0,

λ > 0, cm > 0.

3. β = 1, 1 � p � ∞, 1 � q <∞: assume that E|ξ|q <∞.

4. β = 1, 1 � p � ∞, q = ∞: assume that ∃ε > 0 such that

E[log(|ξ|)I(|ξ| > ε)] <∞.
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A priori regularity

δH =

⎧⎨⎩
1−β

l , H has polynomial tail and p = ∞,

0, otherwise.

Theorem 1. Suppose that ψ and φ are wavelet and scaling functions of regularity

s, where 0 < r < s. Consider function f and its wavelet transform under

assumption H.

Then, for any fixed value of scaling coefficients θk , f ∈ Br
p,q almost surely if and

only if

either r +
1
2
− α

2
− β

p
+ δH < 0,

or r +
1
2
− α

2
− β

p
= 0 and 0 � β < 1, p <∞, q = ∞.
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Nonparametric Bayesian estimators

Assume fixed design (i.e. Xi = xi are fixed):

Yi = f(xi) + εi, xi ∈ [0, 1],

with E(εi) = 0 for all i.

Prior distribution: f ∼ G,

where G is a probability measure on a set of functions f .

University of Bristol - Lecture 1 -41-



Nonparametric Bayesian estimators: examples

1. G = GP(m(x), k(x, y)) - Gaussian process with mean function

m(x) = Ef(x) and covariance function k(x, y) = Cov(f(x), f(y)) -

symmetric and positive definite.

2. Wavelet dictionary: Abramovich, Sapatinas, Silverman (2000), Bochkina (2002):

model f as

f(x) = f0(x) + fw(x) =
M∑
i=1

ηλiφλi(x) +
∑
λ∈Λ

ωλϕλ(x),

where φλ(x) = a1/2φ(a(x− b)), ψλ(x) = a1/2ψ(a(x− b))
λ = (a, b) ∈ [a0,∞) × [0, 1], M <∞ and λi < a0.

Take Λ - Poisson process on R+ × [0, 1] with intensity μ(a, b) ∝ a−α,

α > 0, and ωλ | Λ ∼ Hλ(·) iid.

For GaussianHλ, Abramovich et al. (2000) give necessary and sufficient

conditions for f ∈ Br
p,q with probability 1, for more generalH - in Bochkina

(2002).
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3. Levy adaptive regression kernels: f(x) =
∫
g(x, ω)L(dω),

where L(ω) is a Levy random measure:

L(A) =
N∑

k=0

θkIA(ωj)

where N ∼ Pois(μ), (βj , ωj) ∼ π(dβ, dω) iid (C. Tu, M.Clyde, R. Wolpert,

2007).
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Nonparametric Bayesian estimators with Gaussian process prior

Definition 4. A Gaussian process is a collection of random variables, any finite

number of which have a joint Gaussian distribution.

Assume that the observation errors are also Gaussian: Yi ∼ N (f(xi), σ2), or, in

the matrix form,

Y ∼ Nn(f , σ2In),

where Y = (Y1, . . . , Yn)T , f = (f(x1), . . . , f(xn))T .

Often, in regression problems a priori Ef(x) = m(x) = 0.

Prior: f ∼ GP(0, k(x, y)).

University of Bristol - Lecture 1 -44-



Posterior distribution

Then, the posterior distribution of f at an arbitrary set of points

x∗ = (x∗1, . . . , x
∗
m)T ∈ (0, 1)m, f∗ = (f(x∗1), . . . , f(x∗m))T is

f∗|Y,x,x∗ ∼ Nm(μ,Σ)

where

μ = k(x∗,x)[k(x,x) + σ2In]−1Y,

Σ = k(x∗,x∗) − k(x∗,x)[k(x,x) + σ2In]−1k(x∗,x).

If the posterior mean is used as a point estimator, we have, for any x ∈ (0, 1):

f̂(x) = E(f(x)|Y,x) =
n∑

i=1

αik(xi, x),

where α = [k(x,x) + σ2In]−1Y.

This estimator is linear, and is a particular case of kernel estimator.

In addition, have posterior credible bands.
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Bayesian nonparametric estimators with Gaussian process prior

Smoothness

If we assume f ∈ GP(0, k(x, y)), then f ∈ Hk - Reproducing Kernel Hilbert

Space (RKHS) with kernel k(x, y).

Hence, a priori regularity of a GP f is the regularity of the corresponding RKHS H.

Orthogonal basis estimators with basis {ψi(x)} are also (implicitly) assumed to

belong to a RKHS with reproducing kernel k(x, y) =
∑∞

i=1 ψi(x)ψi(y).

Connection to splines:

if k(x, y): ||f ||2H =
∫

[f ′′(x)]2dx, the corresponding MAP estimator is a cubic

spline.

The corresponding k(x, y) = 1
2 (x− y)2 min(x, y) + 1

3 [min(x, y)]3.
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Regularity of Gaussian processes

1. Brownian motion: k(x, y) = 1
2 [x+ y − |x− y|].

W (t) ∈ C[0, 1], ||W ||2H = W (0)2 + ||W ′||22.

2. Fractional Brownian motion: k(x, y) = 1
2 [x2α + y2α − |x− y|2α],

α ∈ (0, 1). α-smooth.
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University of Bristol - Lecture 1 -47-



Next lecture

Frequentist behaviour of nonparametric estimators:

• Consistency of (point) estimators f̂n.

• Concentration of posterior measures.
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