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Lecture 2. Classical minimax consistency and concentration of posterior

measures

1. Decision-theoretic approach to classical consistency and concentration of
posterior measures
2. Classical consistency
e Bayes and minimax estimators
e Rate of convergence
e Lower bounds

e Adaptivity

3. Concentration of posterior measures

University of Bristol - Lecture 2



1. Decision-theoretic approach to consistency and concentration of posterior

measures

Decision theory for estimation:

e set of outcomes: fo € F - “true” state of nature

not observed directly but with an error: Y; = f(z;) +€;,1=1,...,n
e setof decisions: (Y) = f,, - estimators of f, where Y = (Y7,...,Y,)7.
e aloss function: Q(f,6(Y))
Classical approach:
Risk function R(d, f) = EsQ(f,d(Y)),
Aim: choose the decision function § (Y") that minimises the risk R(J, f).

f is unknown, want to choose (Y") that “works” for all f € F.

Two approaches: Bayes and minimax.
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Bayes and minimax risks

Minimax risk: R (8, F) = sup ;< z R(9, f).

Definition 1. Decision 5M(Y) is called minimax iff

RM(6M, F) = inf RM (6, F) = inf sup E;+Q(f,6(Y)).
0 0 fer

Worst case scenario.

Bayes risk: suppose we have a probability measure 7 over JF, then the

corresponding Bayes risk is

R™(5,F) = E+R(5, f) — /

f

RO = || Q@) pp(y | Naye(a)

Definition 2. Given a probability measure 7 over F, decision 67 (Y") is called

Bayes iff
R™(8", F) = inf R™ (5, F).

0™ minimises average risk with respect to .

Both risks are frequentist, as the loss function is averaged over data Y .

University of Bristol - Lecture 2 -4-



Connection between minimax and Bayes estimators

Minimax estimators are often Bayes estimators.

Lemma 1. Suppose that prior measure 7 is such that R™ (5, F) = RM (5, F), i.e.

| RGPt = sup RG. ).

ferF
Then,

e 07 is minimax

e T is a least favourable prior, i.e. R™ (8, F) > R™ (8, F) for all probability
measures 7’
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Bayesian decision theory

Optimal decision d(Y") is for the given data Y":

5(Y) = argminE[Q(3(Y), f) | Y] = argmin /f QU(Y), Pyn(df | Y)

~ argmin /f QUY), f)p(Y | f)m(df).

In practice the optimal Bayesian and frequentist decision rules coincide.

Bayesian estimators:

e QO(Y),f)=1(6(Y) # f), optimal estimator: posterior mode (MAP)

estimator

e Q(6(Y), f) =116(Y) — f||3, optimal estimator: posterior mean

e QO(Y),f)=1|0(Y) — fl||1, optimal estimator: posterior median
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2. Consistency of point estimators

Definition 3. fn is a (weakly) consistent estimator of f (with respect to distance d)
iff for any € > 0,
P(d(fn, f) >€) =0 as n — .

Commonly considered distances:

e error of estimation at a point: d( fn, ) = | fn(z0) — f(20)], for some
o € [07 1]

e integrated error: d(fn, f) = ||fn(330> — f(20)!]u

1/u
where ||g]|. = (fol \g(x)\“dx) -norm of L*([0,1]), u € [1, o¢].
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Consistency of point estimators

For u = 2, sufficient condition: variance and bias of f,, goto 0asn — oo:

Pl fu(z0) = f(zo)l > €] < € B[ fu(x0) — f(0)’]
= € ?[Elfu(m0) — Efulm0)* + [Efn(w0) — f(z0)[?].

Convergence in mean (of E[d(fn, f)]* for some u > 0) implies consistency.
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Minimax rates of convergence
Look for estimators that achieve consistency over a set of functions JF.

To prove consistency in distance d it is sufficient to show convergence in mean, i.e.
of E[d( fn, f)]* for some u > 0.

This would lead to the “optimal” choice of tuning parameters for a chosen type of

estimator, e.g. kernel, local polynomial or projection estimators.

lllustrate on consistency of the local polynomial estimator over Holder spaces.
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Holder spaces
Definition 4. Let 3 > 0, M > 0. The Holder class H” (M) on [0, 1] is defined
as the set of k = | 3] times differentiable functions f : [0, 1] — R whose

derivative f(*) satisfies

fR () — fF(y)| < M|z —y[PF, Va,y€[0,1].
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Local polynomial estimator

Definition 5. Let K : R — R be a kernel, h > 0 be a bandwidth, and k& > 0 be
an integer. The statistic f,,(z) = U7 (0)0,,(x) with

G, (x) = g min, {zn: [YZ 9T (2)U (th— :c)rK (th_ x)}

1=1

is called a local polynomial estimator of order k of f(x), or L P(k) estimator of
f(x) for short.

Recall that

U) = (Lu,u?/2,...,u"/k)T.

University of Bristol - Lecture 2

-11-



Local polynomial estimator

For a fixed x the LP estimator is a weighted least squares estimator. Indeed, we can

write 0, () as follows:

0, (z) = in (—207a,,, + 07 B,,0),
(z) = arg min ( ny + )

where the matrix B,,,, and the vector a,,, are defined by the formulas

1 — X, —x X, —x X, —x
Bn:c - 7 . g . K ' )
At () () R ()
1 - Xi—a: Xi—ZIZ
e = a2 (S K (S)

Hence, if matrix B, is invertible, L P (k) estimator at = exists and is unique:
0,(x) = B la,,.

nx
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Assumptions (LP)

(LP1) There exist a real number Ay > 0 and a positive integer g such that the

smallest eigenvalue A iy (B2 ) of By, satisfies
)\min (Bna:) Z )\O

foralln > ng andany z € [0, 1].

(LP2) There exists a real number a > Osuch that for any interval A C |0, 1] and
allm > 1,

1 n
— Z[(XZ- € A) < apmax(u(A),1/n),
n
i=1
where 11(A) denotes the Lebesgue measure of A.

(LP3) The kernel K has compact support belonging to [—1, 1] and there exists a
number K, < oo suchthat |[K(u)| < Kpax, Yu € R.
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Variance and bias for L P(k) estimator

Denote bias b(xzg) = Effn(:lzo) — f(xq) and variance

0% (z0) = Ey|fn(@o) — Egfulzo)l*.

Proposition 1. Suppose that f € HP (M) on [0, 1], with 3 > 0 and M > 0. Let
£, be the LP (k) estimator of f with k = | 3].

Assume also that:
(i) the design points X1, ..., .X,, are deterministic;
(i) assumptions (LP1)-(LP3) hold;
(iii) the random variables €; are independent and such thatforallz =1, ..., n,
E(e;) =0, E(e7) < o?

max < OQ.

Then, forall g € |0, 1], n > ng,and h > 1/(2n), the following upper bounds
hold:

42
b < q1hP 2 < ==
b(zo)| = 1l 0% (z0) = -,
where g1 = C,L/k!and g3 = 02, C,, C, )\‘gax max 1, 2ag.
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Consistency of the local polynomial estimator over Holder spaces

Proposition 1 implies that

MSE = b*(x0) + 0%(xo) < ¢?h*° + %

and that the minimizer h,, with respect to h of this upper bound on the risk is given

by 1
q2 S
h :( ) o
"\ 28¢3

Theorem 1. Under the assumptions of Proposition 1 and if the bandwidth is chosen

1
tobe h = h,, = an 28+T, o > 0, the following upper bound holds:

) 2

lim sup sup sup E; {n%‘%ﬁ(azo) - fn(xo)@ < C < o0,
n—oo feHP (M) xo€]0,1]

2

& axr Hmax and a.

where C'is a constant depending only on 3, M, ag, Ao, 0

Corollary 1. Under the assumptions of Theorem 1 we have

.12
lim sup sup E; [n%‘%Hf— ang} < C < o0,
n—oo feHP (M)
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Rate of convergence

Rate of convergence of fn in distance d( f, g) over a set of functions F

r, =inf<e, >0: lim sup sup Ef[egld(fn,f)]” <C < oo
n—oo fEF

Aims:

e find a consistent estimator of f over J that achieves the best possible rate of

convergence

e ideally: characterisation of the set of all consistent estimators of f over F with

the the best possible rate of convergence

Need to determine the best possible rate of convergence.
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Lower bounds

Given d(fn, f) and set of functions F, find the best possible rate of convergence

T'n-

\V/fna Sup Ef[d(fna f)]u > C<F7 ,U’)TZ
ferF

Definition 6. A positive sequence {7, }>°_; is called an optimal rate of
convergence of estimators on (F, d) iff 30 < ¢(F,u) < C(F,u) < oo:

Ifnt supEyld(fu, f)]* < C(F, u)rt
feF

Vi, supE:[d(fn, [)]* > o(F,u)re.
fer

An estimator f,, satisfying

sup B [d(fn, [)]* > C'r,
feF

where {r,, } is the optimal rate of convergence and C"/ < oo is a constant, is called

a rate optimal estimator on (F, d).
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Optimal rates of convergence: global estimation, Holder spaces

Lower bound (Tsybakov, 2009), d( fr, f) = ||fn — fl|2, u > 0, F = HP (M).
Theorem 2. Letr > 0and M > 0, and assume that Y; = f(z;) + &,
i =1,...,n, with deterministic z; and iid &;: Eg; = 0 and Ec? < oo, with

density pe (1) wrt Lebesgue measure on R such that

pe ()

du < p,v°
pe(u+v) b

dp, >0, v9 >0 /pe(u) log

for all |[v| < vy.

Then,

. 2
lim inf inf sup Ef {n%‘%\\f — full2] > c(B, M,px) > 0.
n—oo fn fEHT(M)
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Optimal rates of convergence for LP estimators over HAlder spaces

Hence, if x; = 7/n, the local polynomial estimator of order k = | 3| with kernel K

satisfying
AK min > 0, A >0, Kppax < 01 Kpinl (Ju] < A) < K(u) < Kpax (Ju] < A)Vu €

and bandwidth h,, = an” ZFFT for some > 0,
is rate optimal on (H” (M), || - ||2),

and r, = T s the optimal rate of convergence for (HP (M), || - ||2).
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Optimal rates of convergence over Hélder spaces for || - ||

For u € [1, 00): the optimal rate of convergence over (H? (M), || - ||.,) is also

B
Tn =N 28+L,

However, for u = 00: ||g|oc = SUp,¢(o,1] [9(2)], the optimal rate of convergence

(in the minimax sense) under Gaussian iid errors is

B
logn \ 2°#+1
’]"n p— ( ) .
n

(Tsybakov, 2009).
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Estimation at a point
For lower bound for the pointwise estimation over Holder class H” (M), with

d(f, fn) = |f(w0) — fu(x0)], is given by

inf sup E|f,(20) — f(2o)[* X n” T,
frn fEHB (M)
(Cai, 2003 - for white noise model, Bochkina & Sapatinas, 2009 - for nonparametric

regression model).

Hence, the local polynomial estimator with kernel and bandwidth specified above is
also locally rate optimal on (HP (M), | f(zo) — g(x0))).
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Adaptivity
In order to be rate optimal over H?, fn has to depend on smoothness of f, (3.

In practice, 3 may not be known.
Definition 7. An estimator fn of f is called asymptotically efficient on the class F
iff
Supfef-Efon — fH% _
n=ooinf ;. suprer Byl fn — f113

where the infimum is over all estimators.

Y

Definition 8. An estimator fn of f is called adaptive in the exact minimax sense on
the family of classes {H” (M), 8 > 0, M > 0} if it is asymptotically efficient for
all classes HP (M), 8 > 0,M > 0, simultaneously.
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Optimality of adaptive estimators

Now consider the subset of estimators A that do not depend on 3 or M .

Adaptive rate of convergence 7, 4 over (HP (M), d):
Ifn€A: sup Epld(fu, f)? < C(B,M)ry 4 < oo
feHP (M)

Vfn €A, sup  Ef[d(fn, [)]* = (B, M)ry 4 > 0.
FEHA (M) ’
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Payment for adaptation in pointwise convergence rate over Holder spaces.

Lepski (1990), white noise model: showed that the adaptive pointwise rate of

convergence over Holder spaces HP (L) is 1, = (loin) T e there s an
additional log factor.

Proposition 2. (Cai, 2003) Let u & [1, oo). Consider two Holder classes

H5 (M;) fori = 1,2. Let 81 > 35 > 0. If an estimator f,, attains a rate of n~"
over HP' (M) with p > w32 /(1 + 235), in particular, if f, is rate-optimal over

Hﬁl (M1>, then

o\ b/ (14262) )
lim inf ( ) sup  Ef|fn(zo) — f(zo)]" > 0.
Nn— 00 log n fEHB2 (M)

For the integral convergence rate, it is possible to avoid payment for adaptation

(Lepski & Spokoiny, 1997, Cai, 2000). Studied by Cai(2008).

B/(1+203)
The rate is (loﬂ)

n
class HB(M) and it is attainable: Lepski (1990), Lepski & Spokoiny (1997) - for
kernel estimators, Cai (2003, 2008) - for wavelet estimators.

called adaptive pointwise minimax rate over Holder

University of Bristol - Lecture 2

-24-



Lepski method.

Choice of data-driven bandwidth on [Apin, Amax|, where by, = lofb” is the

smallest bandwidth for which f,, (x; hmin ) is still a consistent estimator of f,
hmax = 1.

e Start with a kernel estimator fn(a:, h) = th(ZIZ — y)dPn(y | f)

e Choose a discrete 'logarithmic’ grid A of candidate bandwidths:

hi
k=20.1,...
[d(hy)]~1/2 o }’

where d(h) = y/max (1, clog(hmax/I)).

H = S ho = hmax, h —
-

e Select a data-driven bandwidth ﬁn to be the maximal element of H such that
hn =max{h € H : | fn(z0, h)— fn(z0,9)] < (14+d(g)""/*)on(g)d(g)Vg < h,g € .

K|} . .
Here 02 (h) = % - variance of kernel estimator f,, (g, h).

o Use fL(x) = fu(x, hy) as the fully data driven estimator of .
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Adaptive kernel estimator

Then, if s is the order of the kernel K, for every 3 € (0, s,

sup Ey sup |fl(z) — f(2)] < Cry(B),
fEHA(L) r€[0,1]

1
where r,, = (—Oin

)5/(1+25)

(Lepski & Spokoiny, 1997).
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Further questions
How realistic is the model white noise/Gaussian assumption?
Assume: Y; ~ N (f(x;), o) independent, derive an “optimal” estimator of f.

If the model assumption is wrong, how far can the data deviate from this model in

order for the estimator to remain optimal?

Golubev & Spokoiny (2009) - for parametric estimation.
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Generalisations

e non-Gaussian errors (Chichignoud, 2010; Gannaz (2011): GLM with £1 norm
penalty)

e multivariate case: Goldenshluger & Lepski (2008) Universal pointwise selection

rule in multivariate function estimation. Bernoulli, 14(4), 1150-1190.
e multivariate case with composite functions (Juditsky, Lepski, Tsybakov, 2009).

In the current work: some restrictive assumptions.

Confidence regions, in the context of density estimation:

e [P balls [Hoffmann and Lepski (2002, AoS), Baraud (2004, AoS), Cai and Low
(2006, AoS), Robins and van der Vaart (2006, AoS)],

e uniform (L°°) confidence bands (Gine & Nickl).
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Equivalence of experiments
Lucien Le Cam (1986) Asymptotic methods in statistical decision theory, Springer.

Consider two statistical problems, P and Ps, with the sample spaces X;, 7 = 1, 2
(and suitable o-fields), but with the same parameter space ©.

Let D be any (measurable) decision space andlet () : © X D — [O, oo) denote a
loss function. Let ||Q|| = sup[Q(0,d) : 8 € O, d € D]. §* will be the generic
symbol for a decision procedure in the ith problem. R (%) (6%, Q, 0) is the risk using
procedure §* under loss (9 and true parameter §. Le Cam metric is

A(P1,P2) = max infsupsup sup |R'(6',Q,0) — R*(6%,Q,0)|,
oh 52 0 Q:lQll=1

infsupsup sup [R'(3",Q,0) — R*(6%,Q,0)
810 QiRll=1

Thus, if A(P1,P3) < e, this means that for every procedure 4° in problem ¢ 3 a
procedure 87 in problem j (i # 7), with risk differing by at most €, uniformly over all

() and 0.
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3. Concentration of posterior measures
Nonparametric regression model: Y; ~ N (f(x;), 0?), independent.
Assume f is the “true” function that generated the data.

1. A. van der Vaart & H. Zanten (2008) Rates of contraction of posterior distributions

based on Gaussian process priors. Annals of Statistics, 36(3), 1435 - 1463.

The rate of convergence (rate of contraction) is smallest r,, such that
P(d(f, fo) > Mr, | Y1,...,Y,) — 0 as n — oo,

for sufficiently large M > 0.
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Concentration of posterior measures

Theorem 3. (van der Vaart & Zanten, 2008). Assume Y; | f ~ N (f(x;), 0?) iid,
x; € X are fixed, with “true” values ( fo, 09).

Let prior on f be a zero mean Gaussian process IV with bounded sample paths
and RKHS H, and suppose that fo € supp(W'). Furthermore, take an absolutely
continuous prior on o to be supported on [a, b] C (0, co) with a Lebesgue density

that is bounded away from 0, such that oy € |a, b].

Then, the posterior distribution satisfies
Et 0o P(|f — folln + |0 — 00| > Mry | Yi,...,Y,) — 0 for any sufficiently

large constant M and r,, is defined as follows:

inf 2 —logP(||W]l,, < rn) < nr?,
Bt U1~ o B(W [ < 1) < e

where ||g||? = %Z?’Zl g(z5)]?.
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Example: Integrated Brownian motion prior

Define I, f as the function ¢ — fo s)dsand If} f as I3, (11 f).
Theorem 4. (Theorem 4.1, A. van der Vaart & H. Zanten, 2008). Let W be a
standard Brownian motion and Z, . . ., Z;, independent standard normal random

variables. The RKHS of the process
k
t— I5 W)+ ) Zit'/il
i=0

is the Sobolev space W5 +1[0, 1] with norm

9115, = 1lg™113 + 3 olg™ (0)]2

If f € CP with 3 = k + 1/2, then the contraction rate is 7, < " Z
Also extended to non-iid observations:

Subhashis Ghosal and Aad van der Vaart (2007). Convergence rates of posterior
distributions for non-iid observations. Ann. Statist. 35, 192223.
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Concentration of posterior measures

2. Gine & Nickl (2011) On the uniform consistency of nonparametric Bayes

estimates.
White noise model: dY (t) = f(t)dt + %dW(t).

Gaussian process prior with wavelet-based kernel that a priori belongs to a slightly
modified Holder class H” (L) with probability 1:

N oo 27—
=) &Gowk(t)+ Y Z VI Eikik(t)
k=0 j=L k=0

where &, &5 ~ N(0,1)iid, p, = Tand p; = j~1277@+D 5 > [
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Concentration of posterior measures: Gine & Nickl (2011) (cont)

logn \ 28+1
- :

Rate of contraction in L>° norm || f||oc = sup,, | f(x)|: r, = (
Theorem 5. Let (gp, zp) be scaling and wavelet Daubechies functions of regularity
s >r > 0. Let fo € C™°(]0, 1]), and suppose we observe

dYy(t) = fo(t)dt + Z=dW(t).

Then, there exist C' > 0 and M < oo depending only on wavelet basis, r and
Hf0||a,oo such that, for every My < M < oo, andforalln € N,

Eyv,P(f: ||f = follse > Mry, | Vo) < exp{—C?(M — My)*logn}.
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