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Lecture 2. Classical minimax consistency and concentration of posterior

measures

1. Decision-theoretic approach to classical consistency and concentration of

posterior measures

2. Classical consistency

• Bayes and minimax estimators

• Rate of convergence

• Lower bounds

• Adaptivity

3. Concentration of posterior measures
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1. Decision-theoretic approach to consistency and concentration of posterior

measures

Decision theory for estimation:

• set of outcomes: f0 ∈ F - “true” state of nature

not observed directly but with an error: Yi = f(xi) + εi, i = 1, . . . , n

• set of decisions: δ(Y ) = f̂n - estimators of f , where Y = (Y1, . . . , Yn)T .

• a loss function: Q(f, δ(Y ))

Classical approach:

Risk functionR(δ, f) = EfQ(f, δ(Y )),

Aim: choose the decision function δ(Y ) that minimises the risk R(δ, f).

f is unknown, want to choose δ(Y ) that “works” for all f ∈ F .

Two approaches: Bayes and minimax.
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Bayes and minimax risks

Minimax risk: RM (δ,F) = supf∈F R(δ, f).

Definition 1. Decision δM(Y ) is called minimax iff

RM (δM ,F) = inf
δ
RM (δ,F) = inf

δ
sup
f∈F

EfQ(f, δ(Y )).

Worst case scenario.

Bayes risk: suppose we have a probability measure π over F , then the

corresponding Bayes risk is

Rπ(δ,F) = EπR(δ, f) =
∫
F
R(δ, f)π(df) =

∫
F

∫
Rn

Q(δ(Y ), f)p(Y | f)dY π(df).

Definition 2. Given a probability measure π over F , decision δπ(Y ) is called

Bayes iff

Rπ(δπ,F) = inf
δ
Rπ(δ,F).

δπ minimises average risk with respect to π.

Both risks are frequentist, as the loss function is averaged over data Y .
University of Bristol - Lecture 2 -4-



Connection between minimax and Bayes estimators

Minimax estimators are often Bayes estimators.

Lemma 1. Suppose that prior measure π is such thatRπ(δ,F) = RM (δ,F), i.e.∫
F
R(δ, f)π(df) = sup

f∈F
R(δ, f).

Then,

• δπ is minimax

• π is a least favourable prior, i.e. Rπ(δ,F) ≥ Rπ′
(δ,F) for all probability

measures π′.
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Bayesian decision theory

Optimal decision δ(Y ) is for the given data Y :

δ(Y ) = arg min
δ

E[Q(δ(Y ), f) | Y ] = arg min
δ

∫
F
Q(δ(Y ), f)π(df | Y )

= arg min
δ

∫
F
Q(δ(Y ), f)p(Y | f)π(df).

In practice the optimal Bayesian and frequentist decision rules coincide.

Bayesian estimators:

• Q(δ(Y ), f) = I(δ(Y ) �= f), optimal estimator: posterior mode (MAP)

estimator

• Q(δ(Y ), f) = ||δ(Y ) − f ||22, optimal estimator: posterior mean

• Q(δ(Y ), f) = ||δ(Y ) − f ||1, optimal estimator: posterior median
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2. Consistency of point estimators

Definition 3. f̂n is a (weakly) consistent estimator of f (with respect to distance d)

iff for any ε > 0,

P(d(f̂n, f) > ε) → 0 as n→ ∞.

Commonly considered distances:

• error of estimation at a point: d(f̂n, f) = |f̂n(x0) − f(x0)|, for some

x0 ∈ [0, 1]

• integrated error: d(f̂n, f) = ||f̂n(x0) − f(x0)||u,

where ||g||u =
(∫ 1

0
|g(x)|udx

)1/u

- norm of Lu([0, 1]), u ∈ [1,∞].
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Consistency of point estimators

For u = 2, sufficient condition: variance and bias of f̂n go to 0 as n→ ∞:

P[|f̂n(x0) − f(x0)| > ε] ≤ ε−2
E[|f̂n(x0) − f(x0)|2]

= ε−2[E|f̂n(x0) − Ef̂n(x0)|2 + |Ef̂n(x0) − f(x0)|2].
Convergence in mean (of E[d(f̂n, f)]u for some u > 0) implies consistency.
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Minimax rates of convergence

Look for estimators that achieve consistency over a set of functions F .

To prove consistency in distance d it is sufficient to show convergence in mean, i.e.

of E[d(f̂n, f)]u for some u > 0.

This would lead to the “optimal” choice of tuning parameters for a chosen type of

estimator, e.g. kernel, local polynomial or projection estimators.

Illustrate on consistency of the local polynomial estimator over Hölder spaces.
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Hölder spaces

Definition 4. Let β > 0, M > 0. The Hölder class H
β(M) on [0, 1] is defined

as the set of k = �β	 times differentiable functions f : [0, 1] → R whose

derivative f (k) satisfies

|f (k)(x) − f (k)(y)| ≤M |x− y|β−k, ∀x, y ∈ [0, 1].
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Local polynomial estimator

Definition 5. Let K : R → R be a kernel, h > 0 be a bandwidth, and k > 0 be

an integer. The statistic f̂n(x) = UT (0)θ̂n(x) with

θ̂n(x) = arg min
θ∈Rk+1

{
n∑

i=1

[
Yi − θT (x)U

(
Xi − x

h

)]2

K

(
Xi − x

h

)}

is called a local polynomial estimator of order k of f(x), or LP (k) estimator of

f(x) for short.

Recall that

U(u) = (1, u, u2/2!, . . . , uk/k!)T .
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Local polynomial estimator

For a fixed x the LP estimator is a weighted least squares estimator. Indeed, we can

write θ̂n(x) as follows:

θ̂n(x) = arg min
θ∈Rk+1

(−2θTanx + θTBnxθ),

where the matrix Bnx and the vector anx are defined by the formulas

Bnx =
1
nh

n∑
i=1

U

(
Xi − x

h

)
UT

(
Xi − x

h

)
K

(
Xi − x

h

)
,

anx =
1
nh

n∑
i=1

YiU

(
Xi − x

h

)
K

(
Xi − x

h

)
.

Hence, if matrix Bnx is invertible, LP (k) estimator at x exists and is unique:

θ̂n(x) = B−1
nx anx.
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Assumptions (LP)

(LP1) There exist a real number λ0 > 0 and a positive integer n0 such that the

smallest eigenvalue λmin(Bnx) of Bnx satisfies

λmin(Bnx) ≥ λ0

for all n ≥ n0 and any x ∈ [0, 1].

(LP2) There exists a real number a0 > 0such that for any interval A ⊆ [0, 1] and

all n ≥ 1,

1
n

n∑
i=1

I(Xi ∈ A) ≤ a0 max(μ(A), 1/n),

where μ(A) denotes the Lebesgue measure of A.

(LP3) The kernelK has compact support belonging to [−1, 1] and there exists a

numberKmax <∞ such that |K(u)| ≤ Kmax, ∀u ∈ R.
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Variance and bias for LP (k) estimator

Denote bias b(x0) = Ef f̂n(x0) − f(x0) and variance

σ2(x0) = Ef |f̂n(x0) − Ef f̂n(x0)|2.

Proposition 1. Suppose that f ∈ H
β(M) on [0, 1], with β > 0 and M > 0. Let

f̂n be the LP (k) estimator of f with k = �β	.

Assume also that:

(i) the design points X1, . . . , Xn are deterministic;

(ii) assumptions (LP1)-(LP3) hold;

(iii) the random variables εi are independent and such that for all i = 1, . . . , n,

E(εi) = 0, E(ε2i ) ≤ σ2
max <∞.

Then, for all x0 ∈ [0, 1], n ≥ n0, and h ≥ 1/(2n), the following upper bounds

hold:

|b(x0)| ≤ q1h
β , σ2(x0) ≤ q2

nh
,

where q1 = C∗L/k! and q2 = σ2
maxC∗, C∗ = 2Kmax

λ0
max 1, 2a0.
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Consistency of the local polynomial estimator over Holder spaces

Proposition 1 implies that

MSE = b2(x0) + σ2(x0) ≤ q21h
2β +

q2
nh

and that the minimizer hn with respect to h of this upper bound on the risk is given

by

hn =
(

q2
2βq21

) 1
2β+1

n−
1

2β+1 .

Theorem 1. Under the assumptions of Proposition 1 and if the bandwidth is chosen

to be h = hn = αn−
1

2β+1 , α > 0, the following upper bound holds:

lim sup
n→∞

sup
f∈Hβ(M)

sup
x0∈[0,1]

Ef

[
n

β
2β+1 |f(x0) − f̂n(x0)|

]2

≤ C <∞,

where C is a constant depending only on β, M , a0, λ0, σ2
max, Kmax and α.

Corollary 1. Under the assumptions of Theorem 1 we have

lim sup
n→∞

sup
f∈Hβ(M)

Ef

[
n

β
2β+1 ||f − f̂n||2

]2

≤ C <∞,
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Rate of convergence

Rate of convergence of f̂n in distance d(f, g) over a set of functions F :

rn = inf

{
εn > 0 : lim sup

n→∞
sup
f∈F

Ef [ε−1
n d(f̂n, f)]u � C <∞

}
.

Aims:

• find a consistent estimator of f over F that achieves the best possible rate of

convergence

• ideally: characterisation of the set of all consistent estimators of f over F with

the the best possible rate of convergence

Need to determine the best possible rate of convergence.
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Lower bounds

Given d(f̂n, f) and set of functions F , find the best possible rate of convergence

rn:

∀f̂n, sup
f∈F

Ef [d(f̂n, f)]u ≥ C(F , u)ru
n.

Definition 6. A positive sequence {rn}∞n=1 is called an optimal rate of

convergence of estimators on (F , d) iff ∃0 < c(F , u) ≤ C(F , u) <∞:

∃f̂n : sup
f∈F

Ef [d(f̂n, f)]u ≤ C(F , u)ru
n

∀f̂n, sup
f∈F

Ef [d(f̂n, f)]u ≥ c(F , u)ru
n.

An estimator f̂n satisfying

sup
f∈F

Ef [d(f̂n, f)]u ≥ C′ru
n,

where {rn} is the optimal rate of convergence and C ′ <∞ is a constant, is called

a rate optimal estimator on (F , d).
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Optimal rates of convergence: global estimation, Holder spaces

Lower bound (Tsybakov, 2009), d(f̂n, f) = ||f̂n − f ||2, u > 0, F = H
β(M).

Theorem 2. Let r > 0 and M > 0, and assume that Yi = f(xi) + εi,

i = 1, . . . , n, with deterministic xi and iid εi: Eεi = 0 and Eε2i <∞, with

density pε(u) wrt Lebesgue measure on R such that

∃p� > 0, v0 > 0 :
∫
pε(u) log

pε(x)
pε(u+ v)

du ≤ p�v
2

for all |v| ≤ v0.

Then,

lim inf
n→∞ inf

f̂n

sup
f∈Hr(M)

Ef

[
n

β
2β+1 ||f − f̂n||2

]2

≥ c(β,M, p�) > 0.
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Optimal rates of convergence for LP estimators over Hölder spaces

Hence, if xi = i/n, the local polynomial estimator of order k = �β	 with kernel K

satisfying

∃Kmin > 0, Δ > 0, Kmax <∞ : KminI(|u| ≤ Δ) ≤ K(u) ≤ KmaxI(|u| ≤ Δ) ∀u ∈

and bandwidth hn = αn−
1

2β+1 for some α > 0,

is rate optimal on (Hβ(M), || · ||2),

and rn = n−
β

2β+1 is the optimal rate of convergence for (Hβ(M), || · ||2).
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Optimal rates of convergence over Hölder spaces for || · ||u
For u ∈ [1,∞): the optimal rate of convergence over (Hβ(M), || · ||u) is also

rn = n−
β

2β+1 .

However, for u = ∞: ||g||∞ = supx∈[0,1] |g(x)|, the optimal rate of convergence

(in the minimax sense) under Gaussian iid errors is

rn =
(

logn
n

) β
2β+1

.

(Tsybakov, 2009).
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Estimation at a point

For lower bound for the pointwise estimation over Hölder class H
β(M), with

d(f, f̂n) = |f(x0) − f̂n(x0)|, is given by

inf
f̃n

sup
f∈Hβ(M)

E|f̃n(x0) − f(x0)|u 
 n−
uβ

2β+1 ,

(Cai, 2003 - for white noise model, Bochkina & Sapatinas, 2009 - for nonparametric

regression model).

Hence, the local polynomial estimator with kernel and bandwidth specified above is

also locally rate optimal on (Hβ(M), |f(x0) − g(x0)|).
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Adaptivity

In order to be rate optimal over H
β , f̂n has to depend on smoothness of f , β.

In practice, β may not be known.

Definition 7. An estimator f̂n of f is called asymptotically efficient on the class F
iff

lim
n→∞

supf∈F Ef ||f̂n − f ||22
inf f̃n

supf∈F Ef ||f̂n − f ||22
= 1,

where the infimum is over all estimators.

Definition 8. An estimator f̂n of f is called adaptive in the exact minimax sense on

the family of classes {Hβ(M), β > 0,M > 0} if it is asymptotically efficient for

all classes H
β(M), β > 0,M > 0, simultaneously.
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Optimality of adaptive estimators

Now consider the subset of estimators A that do not depend on β or M .

Adaptive rate of convergence rn,A over (Hβ(M), d):

∃f̂n ∈ A : sup
f∈Hβ(M)

Ef [d(f̂n, f)]2 ≤ C(β,M)r2n,A <∞

∀f̂n ∈ A, sup
f∈Hβ(M)

Ef [d(f̂n, f)]2 ≥ c(β,M)r2n,A > 0.
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Payment for adaptation in pointwise convergence rate over Hölder spaces.

Lepski (1990), white noise model: showed that the adaptive pointwise rate of

convergence over Hölder spaces H
β(L) is rn =

(
log n

n

) β
2β+1

, i.e. there is an

additional log factor.

Proposition 2. (Cai, 2003) Let u ∈ [1,∞). Consider two Hölder classes

H
βi(Mi) for i = 1, 2. Let β1 > β2 > 0. If an estimator f̂n attains a rate of n−ρ

over H
β1(M1) with ρ > uβ2/(1 + 2β2), in particular, if f̂n is rate-optimal over

H
β1(M1), then

lim inf
n→∞

(
n

logn

)uβ2/(1+2β2)

sup
f∈Hβ2 (M2)

Ef |f̂n(x0) − f(x0)|u > 0.

For the integral convergence rate, it is possible to avoid payment for adaptation

(Lepski & Spokoiny, 1997, Cai, 2000). Studied by Cai(2008).

The rate is
(

log n
n

)β/(1+2β)

called adaptive pointwise minimax rate over Hölder

class H
β(M), and it is attainable: Lepski (1990), Lepski & Spokoiny (1997) - for

kernel estimators, Cai (2003, 2008) - for wavelet estimators.
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Lepski method.

Choice of data-driven bandwidth on [hmin, hmax], where hmin = log n
n is the

smallest bandwidth for which fn(x;hmin) is still a consistent estimator of f ,

hmax = 1.

• Start with a kernel estimator fn(x;h) =
∫
Kh(x− y)dPn(y | f)

• Choose a discrete ’logarithmic’ grid H of candidate bandwidths:

H =
{
h0 = hmax, hk+1 =

hk

1 + [d(hk)]−1/2
, k = 0, 1, . . .

}
,

where d(h) =
√

max(1, c log(hmax/h)).

• Select a data-driven bandwidth ĥn to be the maximal element of H such that

ĥn = max{h ∈ H : |fn(x0, h)−fn(x0, g)| ≤ (1+d(g)−1/2)σn(g)d(g)∀g < h, g ∈ H

Here σ2
n(h) = ||K||22

nh - variance of kernel estimator fn(x0, h).

• Use f̂L
n (x) = fn(x, ĥn) as the fully data driven estimator of f .
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Adaptive kernel estimator

Then, if s is the order of the kernelK , for every β ∈ (0, s],

sup
f∈Hβ(L)

Ef sup
x∈[0,1]

|f̂L
n (x) − f(x)| ≤ Crn(β),

where rn =
(

log n
n

)β/(1+2β)

.

(Lepski & Spokoiny, 1997).
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Further questions

How realistic is the model white noise/Gaussian assumption?

Assume: Yi ∼ N (f(xi), σ) independent, derive an “optimal” estimator of f .

If the model assumption is wrong, how far can the data deviate from this model in

order for the estimator to remain optimal?

Golubev & Spokoiny (2009) - for parametric estimation.

University of Bristol - Lecture 2 -27-



Generalisations

• non-Gaussian errors (Chichignoud, 2010; Gannaz (2011): GLM with �1 norm

penalty)

• multivariate case: Goldenshluger & Lepski (2008) Universal pointwise selection

rule in multivariate function estimation. Bernoulli, 14(4), 1150-1190.

• multivariate case with composite functions (Juditsky, Lepski, Tsybakov, 2009).

In the current work: some restrictive assumptions.

Confidence regions, in the context of density estimation:

• Lp balls [Hoffmann and Lepski (2002, AoS), Baraud (2004, AoS), Cai and Low

(2006, AoS), Robins and van der Vaart (2006, AoS)],

• uniform (L∞) confidence bands (Gine & Nickl).
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Equivalence of experiments

Lucien Le Cam (1986) Asymptotic methods in statistical decision theory, Springer.

Consider two statistical problems, P1 and P2, with the sample spaces Xi, i = 1, 2
(and suitable σ-fields), but with the same parameter space Θ.

Let D be any (measurable) decision space and let Q : Θ ×D → [0,∞) denote a

loss function. Let ||Q|| = sup[Q(θ, d) : θ ∈ Θ, d ∈ D]. δi will be the generic

symbol for a decision procedure in the ith problem. R(i)(δi, Q, θ) is the risk using

procedure δi under loss Q and true parameter θ. Le Cam metric is

Δ(P1,P2) = max

[
inf
δ1

sup
δ2

sup
θ

sup
Q: ||Q||=1

|R1(δ1, Q, θ) −R2(δ2, Q, θ)|,

inf
δ2

sup
δ1

sup
θ

sup
Q: ||Q||=1

|R1(δ1, Q, θ) −R2(δ2, Q, θ)|
]
.

Thus, if Δ(P1,P2) ≤ ε, this means that for every procedure δ i in problem i ∃ a

procedure δj in problem j (i �= j), with risk differing by at most ε, uniformly over all

Q and θ.
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3. Concentration of posterior measures

Nonparametric regression model: Yi ∼ N (f(xi), σ2), independent.

Assume f0 is the “true” function that generated the data.

1. A. van der Vaart & H. Zanten (2008) Rates of contraction of posterior distributions

based on Gaussian process priors. Annals of Statistics, 36(3), 1435 - 1463.

The rate of convergence (rate of contraction) is smallest rn such that

P(d(f, f0) > Mrn | Y1, . . . , Yn) → 0 as n→ ∞,

for sufficiently large M > 0.
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Concentration of posterior measures

Theorem 3. (van der Vaart & Zanten, 2008). Assume Yi | f ∼ N (f(xi), σ2) iid,

xi ∈ X are fixed, with “true” values (f0, σ0).

Let prior on f be a zero mean Gaussian processW with bounded sample paths

and RKHS H, and suppose that f0 ∈ supp(W ). Furthermore, take an absolutely

continuous prior on σ to be supported on [a, b] ⊂ (0,∞) with a Lebesgue density

that is bounded away from 0, such that σ0 ∈ [a, b].

Then, the posterior distribution satisfies

Ef0,σ0P(||f − f0||n + |σ − σ0| > Mrn | Y1, . . . , Yn) → 0 for any sufficiently

large constantM and rn is defined as follows:

inf
f∈H: ||f−f0||n<rn

||f ||2H − log P(||W ||n < rn) ≤ nr2n,

where ||g||2n = 1
n

∑n
i=1 |g(xi)|2.
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Example: Integrated Brownian motion prior

Define I1
0+f as the function t→ ∫ t

0
f(s)ds and Im

0+f as I1
0+(Im−1

0+ f).

Theorem 4. (Theorem 4.1, A. van der Vaart & H. Zanten, 2008). Let W be a

standard Brownian motion and Z0, . . . , Zk independent standard normal random

variables. The RKHS of the process

t→ Ik
0+W (t) +

k∑
i=0

Zit
i/i!

is the Sobolev spaceW k+1
2 [0, 1] with norm

||g||2H = ||g(k)||22 +
∑k

i=0[g
(i)(0)]2.

If f ∈ Cβ with β = k + 1/2, then the contraction rate is rn 
 n−
β

2β+1 .

Also extended to non-iid observations:

Subhashis Ghosal and Aad van der Vaart (2007). Convergence rates of posterior

distributions for non-iid observations. Ann. Statist. 35, 192223.
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Concentration of posterior measures

2. Gine & Nickl (2011) On the uniform consistency of nonparametric Bayes

estimates.

White noise model: dY (t) = f(t)dt+ 1√
n
dW (t).

Gaussian process prior with wavelet-based kernel that a priori belongs to a slightly

modified Hölder class H
β(L) with probability 1:

f(t) =
N∑

k=0

ξkϕLk(t) +
∞∑

j=L

2j−1∑
k=0

√
μjξjkψjk(t)

where ξk, ξjk ∼ N (0, 1) iid, μL = 1 and μj = j−12−j(2r+1) ∀j > L.
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Concentration of posterior measures: Gine & Nickl (2011) (cont)

Rate of contraction in L∞ norm ||f ||∞ = supx |f(x)|: rn =
(

log n
n

) β
2β+1

.

Theorem 5. Let (ϕ, ψ) be scaling and wavelet Daubechies functions of regularity

s > r > 0. Let f0 ∈ Cr,∞([0, 1]), and suppose we observe

dY0(t) = f0(t)dt+ 1√
n
dW (t).

Then, there exist C > 0 and M0 <∞ depending only on wavelet basis, r and

||f0||α,∞ such that, for every M0 ≤M <∞, and for all n ∈ N,

EY0P(f : ||f − f0||∞ > Mrn | Y0) ≤ exp{−C2(M −M0)2 logn}.
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