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Lecture 4. Wavelet estimators: simultaneous local and global optimal ity

1. Separable and non-separable function estimators

2. When simultaneous local and global optimality is possible

3. Bayesian wavelet estimator that is locally and globally optimal

4. Conclusions and open questions
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Quick introduction

Wavelet nonparametric regression:

yi = f(i/n) + ǫi, i = 1, . . . , n,

assuming Eǫi = 0, Eǫ2i <∞ and ǫi are independent.

Aim: estimate f .

Model function via its orthonormal wavelet decomposition

f(x) =
2L−1
∑

k=0

θkφLk(x) +
∞
∑

j=L

2j−1
∑

k=0

θjkψjk(x)

Apply orthonormal discrete wavelet transform:

djk = wjk + εjk, cLk = uLk + εL−1,k.

j = L, L + 1, . . . , J − 1, k = 0, 1, . . . , 2j
− 1, n = 2J .

If ǫi ∼ N (0, σ2) then εjk ∼ N (0, σ2) iid.
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Rescaling discrete wavelet transform

Discrete wavelet transform:

djk = wjk + εjk, cLk = uLk + εL−1,k.

Relationship to “continuous” wavelet coefficients θ: θ̃jk
def
=

wjk√
n
≈ θjk .

To esti mate f , need to estimate wjk and uLk .

Rescale:

yjk
def
= djk/

√
n, yk

def
= cL,k/

√
n,

and for independent Gaussian noise,

yjk | θ̃jk ∼ N (θ̃jk, σ
2/n), yk | θ̃k ∼ N (θ̃k, σ

2/n),

independently.
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Aims

1. Ideal aim: given a loss function, characterise the set of Bayesian models that

result in adaptive wavelet estimators optimal with respect to this loss.

Considered loss functions:

• local error d(f, f̂n) = |f(x0) − f̂n(x0)|u, u ∈ [1,∞)

• global error d(f, f̂n) = ||f − f̂n||u, u ∈ [1,∞].

For wavelet estimators: minimax optimality over Besov spacesBr
p,q .

2. Next step is to look at the intersection of these models, i.e. are there Bayesian

models that are simultaneously locally and globally optimal?
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Besov space Br
p,q

Besov sequence norm of wavelet coefficients θ with r > 0, 1 ≤ p, q ≤ ∞ is

defined by

||θ||br
p,q

= ||θk||p +





∞
∑

j=L

2qj(r+1/2−1/p)||θj ||qp





1/q

, if q <∞,

||θ||br
p,q

= ||θk||p + sup
L≤j<∞

[2j(r+1/2−1/p)||θj ||p], if q = ∞,

and the Besov sequence space brp,q(A) = {θ : ||θ||br
p,q

≤ A}.

If regularity of wavelets s is such that s > r > 0, then Besov sequence norm is

equivalent to Besov space norm (Donoho and Johnstone, 1998).

In particular, if θ ∈ brp,q(A), then ||θj ||p ≤ A2−j(r+1/2−1/p).
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Minimax optimal rates for Besov spaces

Local minimax rate and adaptivity

For Besov spacesBr
p,q with r > 1/p and u ∈ [1,∞), the local minimax rate is

given by

inf
f̃n

sup
f∈Br

p,q

E|f̃n(t0) − f(t0)|u ≍ n−
u(r−1/p)

2(r−1/p)+1 ,

however, this rate cannot be achieved by an adaptive estimator (e.g. Lepski(1990)

for Hölder spaces and Brown and Low (1996)), and the best possible local rate an

adaptive estimator can achieve is given by

inf
f̃n

sup
f∈Br

p,q

E|f̃n(t0) − f(t0)|u ≍
(

n

logn

)− u(r−1/p)
2(r−1/p)+1

.

Price for adaptivity: [logn]
u(r−1/p)

2(r−1/p)+1 .
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Global minimax rate for Besov spaces

For Besov spacesBr
p,q and u ∈ [1,∞), global minimax rate is given by

inf
f̃n

sup
f∈Br

p,q

E||f̃n − f ||uu ≍ Λr,p(n)

where

Λr,p(n) =























n−
ur

2r+1 , if u < p(2r + 1),
(

n
log n

)−u(r−1/p)+1
2(r−1/p)+1

logn, if u = p(2r + 1),
(

n
log n

)−u(r−1/p)+1
2(r−1/p)+1

, if u > p(2r + 1)

(Donoho et al. (1995, 1996) and Delyon and Juditsky (1996)).

Can be achieved for adaptive estimators.

What kind of adaptive estimators achieve this rate?
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Separability

Sequence model:

yjk = θjk + εjk, j = L, . . . ,∞, k = 0, . . . , 2j − 1,

where εjk ∼ N (0, σ2) independent.

Definition 1. Estimator δ = (δjk) is separable if for all (j, k) δjk depends only on

yjk and not any other ys.

Non-adaptive estimation

Donoho and Johnstone (1998) showed that

• Bayes minimax estimators for a Besov body brpq(A) and L2 loss are separable

• The optimal separable estimators are asymptotically minimax when p ≤ q and

are within a constant factor of minimax when p > q

Depend on parameters of brpq(A).
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Adaptation for separable estimators (Cai, 2008)

Denote a set of separable estimators by En.

Theorem 1. (Theorem 1 of Cai, 2008). If δn ∈ En attains the optimal rate of

convergence over a Besov body brpq(A), then it must attain the exact same rate at

every point:

0 < lim inf
n→∞

n2r/(2r+1)
E||δn − θ||22 ≤ lim sup

n→∞
n2r/(2r+1)

E||δn − θ||22 <∞

for every θ ∈ brpq(A).

Hence, separable estimators are not rate adaptive .

For an estimator to be rate adaptive, it has to pool information across observations.

Definition 2. Estimator δ is called superefficient at a fixed point θ ∈ brpq(A) if

n2r/(2r+1)
E||δ − θ||22 → 0 as n→ ∞.

For an estimator δn to be adaptive, i.e. to change the convergence rate on a

“smoother” subset of brpq , it has to be superefficient on this set.
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Minimum cost for adaptation for separable estimators

Theorem 2. (Theorem 2 of Cai, 2008). Suppose r1 > r2. If a separable rule δn

attains a rate of n−ρ over br1
p1q1

(A1) with ρ > 2r2/(1 + 2r2), in particular, if δn

is rate-optimal over br1
p1q1

(A1), then

lim inf
n→∞

(

n

logn

)2r2/(1+2r2)

sup
θ∈b

r2
p2q2

(A2)

E||δnθ||22 > 0.

That is, the rate of convergence over br2
p2q2

(A2) cannot be faster than
(

n
log n

)−2r2/(1+2r2)

.

Hence the minimum cost for adaptation for the separable rules over brpq(A) is at

least a logarithmic factor logn2r/(1+2r).

The thresholding estimator with universal threshold achieves this rate adaptively

across a wide range of brpq (Donoho & Johnstone, 1994), hence this bound is sharp.
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Information pooling and adaptability

Theorem 3. (Theorem 3 of Cai, 2008). Suppose r > 0 and let δ = (δjk) be an

estimator that depends on at most hn = o((log n)2r/(1+2r)) observations. Let

θ⋆ ∈ brpq(A). If

lim inf
n→∞

nρ
E||δ − θ⋆||22 <∞

for some ρ > 2r/(1 + 2r), then

lim inf
n→∞

n2r/(1+2r) hn

(logn)2r/(1+2r)
sup

θ∈br
pq(A)

E||δ − θ||22 > 0.

In particular,

lim inf
n→∞

n2r/(1+2r) sup
θ∈br

pq(A)

E||δ − θ||22 = ∞.

Therefore, in order to achieve adaptability, the information pooling index hn should

be at least of order (logn)2r/(1+2r).

Block James-Stein estimator, which is adaptive and attains the optimal global rate

for a wide range of brpq , has hn = logn.
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Block James-Stein estimator

Divide each resolution level j < J into nonoverlapping blocks of approximate

length ℓ = logn.

Denote (jb) the b-th block at level j and S2
(jb) =

∑

k∈(jb) y
2
jk .

Let λ∗ = 4.50524 be the root of the equation λ− log λ− 3 = 0. The BlockJS

estimator f̂BJS has the following non-zero wavelet coefficients θ̂jk :

θ̂jk =

(

1 − λ∗ℓσ2n−1

S2
(jb)

)

+

yjk, k ∈ (jb), j < J.

Then, Cai(1999) showed that f̂BJS achieves minimax global rate for u = 2 over

Br
pq(A) for all r ∈ (0, s), p ≥ 2, q ≥ 1 and A > 0 (for p ∈ [1, 2) the upper

bound includes a log factor).
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Superefficiency of Block James-Stein estimator

Block James-Stein estimator δBJS is superefficient at every fixed point.

Theorem 4. (Theorem 4 of Cai,2008). At any fixed point θ ∈ brpq(A) with p ≥ 2

and q <∞, Block James-Stein estimator δBJS is superefficient, that is,

lim sup
n→∞

n2r/(1+2r)
E||δ − θBJS ||22 = 0.
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Summary: adaptivity and separability

As Cai (2008) shows (for u = 2),

• there exist adaptive estimators that achieve this rate without paying a penalty for

adaptation, and they must be nonseparable, i.e. they must borrow information

across its neighbours.

• For separable rules, the best possible rate has a log factor

• to achieve adaptability over Br
p,q(A), a nonseparable estimator should borrow

information from at least C[logn]2r/(1+2r) wavelet coefficients.
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Conditions on adaptive estimator to be globally and locally minimax optimal

Non-adaptive estimators: Cai, Low and Zhao (2008) showed that it is not possible

for a globally minimax optimal estimator to achieve the pointwise minimax optimal

rate without paying a penalty [logn]u(r−1/p)/(2(r−1/p)+1).

However, it is possible for an adaptive estimator to achieve the global and local

adaptive minimax rates:

e.g. block James-Stein estimator (Cai,1999) achieves the optimal global rate with

u = 2 over Br
pq(A) for all r ∈ (0, s), p ≥ 2, q ≥ 1 and A > 0

and the optimal adaptive local rate (with u = 2) over Br
∞,∞.
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Empirical Bayes estimator

Johnstone & Silverman (2005) suggested an empirical Bayes estimator that

achieves global minimax rate of convergence for u ∈ (0, 2] over Besov spaces

Br
p,q(A).

Scaling coefficients: θ̂k = yk (observed values).

Wavelet coefficients.

Data: yjk | θjk ∼ N (θjk, σ
2/n) - independent, (σ2 is known)

Prior: θjk | πj ∼ (1 − πj)δ0 + πjh - independent.

• The estimate θ̂jk of θjk is the median of the posterior distribution of θjk,

with plugged in π̂j . It is a thresholding estimator with threshold t̂j = tj(π̂j).

(It is a Bayes estimator for the dominating loss on θ for u = 1)

• Estimate πj using maximum marginal likelihood approach.

• The corresponding estimator f̂EB(t) has wavelet coefficients θ̂jk.
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Maximum marginal likelihood estimator for πj

Marginal distribution of yjk (given πj ) is

yjk | πj ∼ (1 − πj)ϕσ/
√

n + πjh
∗, k ∈ Kj .

where h∗(x) = (h ⋆ ϕσ/
√

n)(x), and hence the maximum marginal likelihood

estimator (MMLE) π̂j satisfies

π̂j = arg max
πj∈[pj ,1]

ℓ(πj) = arg max
πj∈[pj ,1]

∑

k∈Kj

log
[

(1 − πj)ϕσ/
√

n(yjk + πjh
∗(yjk)

]

.

pj is chosen in such a way that tj(pj) ≤ σ
√

2 log(2j)/n for all L ≤ j < J .

University of Bristol - Lecture 4 -18-



It can be viewed as an approximate Bayes estimator

Let πj ∼ U [pj, 1]. Then the posterior distribution of πj is

p(πj | y) =

∏

k p(yjk | πj)

(1 − pj)p(yjk)
=

1

(1 − pj)p(yjk)
exp{ℓ(πj)},

and achieves the maximum at π̂j .

The posterior distribution of θjk is

p(θjk | y) =

∫ 1

pj

p(θjk | y, πj)p(πj | y)dπj

≈ p(θjk | y, π̂j)

using Laplace approximation.
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Assumptions on the prior distribution

1. Density h is symmetric and unimodal

2. supu>0

∣

∣

d
du log h(u)

∣

∣ <∞

3. u2h(u) is bounded for all u

4. For some κ ∈ [1, 2] and sufficiently large u, ∃C1, C2 ∈ (0,∞) such that

C1 <
1 −H(u)

uκ−1h(u)
< C2,

where H(x) =
∫ x

−∞ h(u)du.

Under these assumptions and Gaussian error, the posterior median θ̂jk is

• a thresholding rule (i.e. ∃t̂j > 0 such that θ̂jk = 0 for |yjk| ≤ t̂j ),

• with a bounded shrinkage property,i.e. |θ̂jk − yjk| ≤ t̂j + b.
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Global rate, upper bound

Theorem (Theorem 2 of Johnstone & Silverman, 2005).

Assume that φ and ψ have regularity s, 0 < p ≤ ∞, 0 < u ≤ 2, r < s, and that

either r > 1/p or r = p = 1. Suppose that

F = {f : its wavelet coefficients θ ∈ brp,∞(A)}.

Then, there is a constant c such that

sup
f∈F

E||f̂ − f ||uu ≤ c[AΛr,p(nA
2) +Aun−u(r−ν)[logn]α + n−u/2[logn]4].

where ν = max[(1/p− 1/u)+, (1/p− 1)+], α ∈ {0, 1}.

In particular, the theorem implies that EB estimator achieves minimax global rate for

u ∈ [1, 2] and Br
p,q with p, q ∈ [1,∞], r < s and either r > 1/p or r = p = 1.

Is it locally optimal?
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Local minimax rate

Theorem . Let 0 < u 6 2, r > 1/p, 1 6 p, q,6 ∞, φ, ψ ∈ L∞[0, 1],

F = {f : its wavelet coefficients θ ∈ brp,∞(A)}.

Let f̂ be the EB estimator of J&S (2005), under the stated assumptions.

Then, for n > n0 and any t0 ∈ (0, 1),

sup
f∈F

E|f̂(t0) − f(t0)|u 6 Cu
R

(

n

logn

)− u(r−1/p)
2(r−1/p)+1

+ Cu
H

(

n

logn

)−u/2

(logn)uν

+ Cu
An

−u(r−1/p)Qmax(u,1)
n ,

where Qn = 1/(2min(u,1)/p − 1) if p <∞ and Qn = logn/ log 2 if p = ∞,

and rate ν = 4−min(p,2)
2 max(u,1) + I(u = 2) ∈ [1, 5/2].

Hence, EB estimator of Johnstone & Silverman (2005) also achieves the best

possible local rate of convergence for u ∈ [1, 2] over Br
p,q with r > 1/p.
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Local minimax rate: constants

The constants are given by

CR = ||ψ||u∞Ku∗

32u∗−1[Ãu + σu2u/2+4],

CH = 32u∗−1Cu∗

K cu2
u−p∗

2 C−1
g1 ,

CA = 32u∗−1Cu∗

K Ãu

ν =
4 − min(p, 2)

2u∗
+ I(u = 2) ∈ [1, 5/2].

where u∗ = max(u, 1), u∗ = min(u, 1), Ã = c(φ, ψ, r, p)A,

CK = max(K,KL−1) [max(||φ||∞, ||ψ||∞)]u∗ [max(σ, σL−1)]
u∗ ,

and K = supj,t0 |{k : t0 ∈ supp(ψjk)}|.
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Next steps

1. Are the assumptions on the prior distribution h necessary?

More generally, can we find the full set of Bayesian models among

{θjk ∼ πjh+ (1 − πj)δ0, πj ∼ p(πj)}

that such that the resulting posterior median estimator is simultaneously globally

and locally (adaptively) minimax over Br
p,q?

2. Are assumptions of the method realistic in order for the estimator to be applied

in practice?

Almost, the only unrealistic assumption is known variance. In the frequentist

approach, commonly used estimator of σ2 is MAD(dJ−1,k)/0.6745.

One can consider alternative Bayesian estimators, e.g. conditional posterior mean

that is also a thresholding estimator. Johnstone and Silverman (2005) studied a

similar estimator, thresholded posterior mean, with the threshold from the posterior

median. They found that such estimator is globally minimax over Br
p,q for

p ∈ (1, 2].
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Sufficiency of assumptions on prior distribution

1. Density h is symmetric, unimodal

If not satisfied, then the posterior median is not antisymmetric, not increasing.

2. u2h(u) is bounded for all u

3. supu>0

∣

∣

d
du log h(u)

∣

∣ <∞.

Implies bounded shrinkage property of the posterior median. If it is not satisfied

(e.g. for the Gaussian prior wjk ∼ N(0, τ2n)), we have θ̂jk = τ2

τ2+σ2/nyjk

and the amount of shrinkage |θ̂jk − yjk| = σ2

nτ2+σ2 |yjk| is unbounded for

large |yjk| and fixed n.

Johnstone & Silverman (2005) show that in this case the maximum risk is a

constant.
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Sufficiency of assumptions on prior distribution

4. For some κ ∈ [1, 2] and sufficiently large u, ∃C1, C2 ∈ (0,∞) such that

C1 <
1 −H(u)

uκ−1h(u)
< C2,

where H(x) =
∫ x

−∞ h(u)du.

Case κ = 1 corresponds to distributions with exponential tails, κ = 2 - to

distribution with polynomial tails (Pareto - like).

University of Bristol - Lecture 4 -26-



Open problems

• Given a loss function, characterisation of prior distributions such that the

corresponding posterior distribution is efficient.

At least some robustness to misspecification of error distribution.

• Characterisation of prior distributions such that the posterior distribution is

efficient in both “local” and “global” losses.
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Summary

1. Lecture 1: Examples of classical and Bayesian estimators for nonparametric

regression

2. Lecture 2: Application of minimax optimality to derive adaptive estimators with

good performance, illustrated for local polynomial regression estimators

3. Lecture 3: Wavelet estimators for nonparametric regression, local and global

minimax optimality

4. Lecture 4: Wavelet estimators that achieve local and global optimality

simultaneously.
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THANK YOU

for your attention.
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