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Location-scale

Concentration of copper in a sample of drinking water

(milligrams per litre)

2.16 2.21 2.15 2.05 2.06 2.04 1.90 2.03 2.06

2.02 2.06 1.92 2.08 2.05 1.88 1.99 2.01 1.86

1.70 1.88 1.99 1.93 2.20 2.02 1.92 2.13 2.13

Require a point estimate and a range of plausible values.

Model the data. What is a plausible model?



Location-scale

Normal model N(µ, σ2).

1.6 1.8 2.0 2.2 2.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



Location-scale

Identify µ with the concentration of copper.

Behave as if the model were true.

How to estimate µ?

Use the mean as this is the most efficient estimator.

For any α the confidence region of size α is the shortest.

Maximum likelihood µ̂ = 2.016, σ̂ = 0.114. 0.95 confidence

interval

[1.970, 2.062]

The result is certainly plausible, but can we do better?



Location-scale

The rationale for the mean in the Gaussian model is that it is

the most efficient estimator.

That is it gives the shortest confidence interval for any α.

General location-scale model F ((· − µ)/σ), Gauss F = Φ.

Can we choose F to make the confidence interval shorter?



Location-scale

Kuiper distances, log-likelihoods and 95% confidence

intervals with their lengths for four different models for the

copper data

Model Kuiper log–like. 95%–conf. int. length

Gauss 0.171 20.31 [1.970, 2.062] 0.092

t3 0.153 19.66 [1.983, 2.067] 0.084

Laplace 0.163 20.09 [1.989, 2.071] 0.082

Comb, k=100 0.161 23.11 [1.984, 2.036] 0.052



Location-scale

For k ∈ N define the numbers ιk(j) by

ιk(j) =

{
−4 + 2j/k j = 0, . . . , 2k,

(2(j − 2k) + 1)/k j = 2k + 1, . . . , 4k
,

put

w(j) =
ϕ(ι(j))∑4k
i=0ϕ(ι(i))

, j = 0, . . . , 4k,

and finally define the Gaussian comb of order k by

Fcomb,k(x) =

4k∑
j=0

w(j)Φ(3k(x− ιk(j))) .



Location-scale

Distribution function of Comb100 distribution in black with

N(0, 1) superimposed.
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Location-scale

Density function of Comb100 distribution.
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Location-scale

Can one do even better?

Yes, in principle one can drive the length of the confidence

interval down to zero.

Can one do even worse?

Not really, the normal model gives essentially the longest

optimal confidence interval.

The normal distribution minimizes the Fisher information

amongst all distributions with a given variance.



Location-scale

Fisher information

I(F ) =

∫
f (1)(x)2

f(x)
dx

if F has Lebesgue density f and ∞ otherwise.

In the location model F (· − µ) any unbiased estimator of µ

E(T (Xn(µ))) = µ

has variance

V (T (Xn(µ))) ≥ 1

nI(F )
Asymptotically the maximum likelihood estimator satisfies

lim
n→∞

nV (Tml(Xn(µ))) =
1

I(F )



Location-scale

Minimize I(F ) over an ε contamination neighbourhood of

the N(0, 1) distribution

P(N(0, 1), ε) = {P : P = (1− ε)N(0, 1) + εQ,Q ∈ P(R)} .

Huber distributions with densities of the form

f0(x) =


1−ε√

2π
exp

(
−x2/2

)
|x| ≤ k

1−ε√
2π

exp
(
k2/2− k|x|

)
|x| > k

where
2ϕ(k)

k
− 2Φ(k) =

ε

1− ε
.



Location-scale

The location-scale problem is ill-posed and must be

regularized.

Tukey calls such distributions ‘bland’ or ‘hornless’.

Moral: ‘efficiency’ can be imported from the model at no

cost.

TINSTAAFL



Non-parametric regression
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Non-parametric regression

Approximation region

A(xn, α,P) =

{
g : max

I
|wn(xn, g, I)| ≤ σ

√
τn(α) log n

}

Regularize

Minimize the number of local extreme values of g subject to

g ∈ A(xn, α,P)

Davies and Kovac (2001) - taut string



Non-parametric regression
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Non-parametric regression

Minimze total variation of fourth derivative.
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Non-parametric regression

First derivative
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Non-parametric regression

Second derivative
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Non-parametric regression

Third derivative
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Non-parametric regression

Fourth derivative
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Image analysis



Image analysis



Image analysis


