
On some statistical concepts

Laurie Davies

Fakultät Mathematik, Universität Duisburg-Essen

Monday, 17th October 2011



Addendum

Notation

Lower case letters xn denote real data.

Upper case letters Xn denote data generated under a model.



Regularization: Addendum

t3 and Gaussian densities with variance 1.
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Regularization: Addendum

comb100 density and the N(0, 1) density.
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Topologies

comb100 and the N(0, 1) distribution functions

Kolmogorov metric.

dko(F,G) = max
x
|F (x)−G(x)| ≤ 1

dko(comb100, N(0, 1)) = 0.0035

Total variation metric

dtv(F,G) =
1

2

∫
|f(x)− g(x)| dx ≤ 1

dtv(comb100, N(0, 1)) = 0.375



Topologies

Two probability measures P and Q on R.

dko(P,Q) = sup
C∈C1
|P (C)−Q(C)|, C1 = {(−∞, x] :∈ R}

dtv(P,Q) = sup
C∈C2
|P (C)−Q(C)|, C2 = Borel subsets of R

The topology generated by dko is strictly weaker than that

generated by dtv
Oko ⊂ Otv



Topologies

If C is a Vapnik-Cervonenkis class then

dC(P,Q) = sup
C∈C
|P (C)−Q(C)|

generates a weak topology.

Weak metrics allow direct comparisons between empirical

distributions and models

dC(Pn, P ) = O(1/
√
n), dtv(Pn, P ) = 1.

In many cases C is closed under affine transformations A, or

can be taken to be so. In such cases

dC(P
A, QA) = dC(P,Q)

Distance independent of unit of measurement.



Topologies

The following operate in a weak topology:
EDA, histograms, distribution functions, q-q-plots,

scatter plots, outliers, goodness-of-fit tests, ...

Much of (formal) inference operates in a strong density based

topology

Likelihood



Topologies

Distribution function F with density f

F (x) =

∫ x

−∞
f(u) du

Put

F = {F : absoluely continuous distribution function}

(F , dko) is a metric space

D = {f : f ≥ 0,

∫
f(u) du = 1}

(D, ‖ · ‖1) is a metric space



Topologies

Differential operator D

F (x) =

∫ x

−∞
f(u) du, D(F ) = f.

D : (F , dko)→ (D, ‖ · ‖1)

D is pathologically discontinuous.



Likelihood

(a) Likelihood reduces the measure of fit between a data set xn
and a statistical model Pθ to a single number irrespective of

the complexity of both.

(b) Likelihood is dimensionless and imparts no information about

closeness.

(c) Likelihood is blind. Given the data and the model or models,

it is not possible to deduce from the values of the likelihood

whether the models are close to the data or hopelessly

wrong.

(d) Likelihood does not order models with respect to their fit to

the data.



Likelihood

(e) Likelihood based procedures for model choice (AIC, BIC,

MDL, Bayes) give no reason for being satisfied or dissatisfied

with the models on offer.

(f) Likelihood does not contain all the relevant information in

the data xn about the values of the parameter θ.

(g) Given the model, the sample cannot be reduced to the

sufficient statistics without loss of information.

(h) Likelihood is based on the differential operator and is con-

sequently pathologically discontinuous.

(i) Likelihood is evanescent: a slight perturbation of the model

Pθ to a model P ∗θ can cause it to vanish.



Likelihood

On the positive side:

(j) Likelihood delimits the possible.



Solomonoff-Kolmogorov complexity

A sequence of 0s and 1s

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, . . . , 0, 1

Write the shortest computer programme which reproduces

the sequence

Exploit any regularities in the sequence

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . , 1, 0, 1

do 10 i=1,n/2

write(*,*) 0,1

10 continue

Length of the programme is a measure of complexity of the

sequence



Solomonoff-Kolmogorov complexity

Complex sequences are those for which the length of the

shortest programme is the length of the sequence

Random sequences are complex

No better than simply writing the sequence

write(*,*) 0

write(*,*) 1

write(*,*) 0

etc

Martin-Löf: complex sequences pass tests of randomness



Minimum Description Length MDL

Encode the data using a prefix code.

Objects 1,2,3,... with code lengths n(1), n(2), n(3)...

Kraft’s inequality ∑
j

2−n(j) ≤ 1

= 1 a probability measure

A prefix code corresponds to a probability measure (model)

and vice versa.



Minimum Description Length MDL

Idea behind MDL

Several models for the data

Encode the data with each model

The model with the shortest code length is the best of the

models.



Minimum Description Length MDL

Data xn of finite precision

Use model P with P ({xn}) = 1.

The corresponding prefix code is 1 of length 1

This is not liked by proponents of MDL

To avoid this it is now required to decode the code to recover

the data.

No problem, send the decoder P and then the code 1.



Minimum Description Length MDL

To avoid it the models must be chosen before seeing the data.

This argument does not apply to Solomonoff-Kolmogorov

complexity

How does one encode the model?

Typically by encoding parameters, (µ, σ) for Gaussian models

This simply ignores the complexity of the Gaussian model.

Nothing alters if the Gaussian model is replaced by the much

more complex Gaussian comb





Minimum Description Length MDL

The weakness of MDL is the lack of any prescription for

encoding models


