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To understand how cells control and exploit biochemical fluctua-
tions, we must identify the sources of stochasticity, quantify their
effects, and distinguish informative variation from confounding
“noise.” We present an analysis that allows fluctuations of bio-
chemical networks to be decomposed into multiple components,
gives conditions for the design of experimental reporters to mea-
sure all components, and provides a technique to predict the mag-
nitude of these components from models. Further, we identify a
particular component of variation that can be used to quantify the
efficacy of information flow through a biochemical network. By ap-
plying our approach to osmosensing in yeast, we can predict the
probability of the different osmotic conditions experienced by wild-
type yeast and show that the majority of variation can be informa-
tional if we include variation generated in response to the cellular
environment. Our results are fundamental to quantifying sources of
variation and thus are a means to understand biological “design.”

analysis of variance ∣ internal history ∣ gene expression ∣
signal transduction ∣ intrinsic and extrinsic noise

Cells must make decisions in fluctuating environments using
stochastic biochemistry. Such effects create variation between

isogenic cells, which despite sometimes being disadvantageous for
individuals may be advantageous for populations (1). Although the
random occurrence and timing of chemical reactions are the pri-
mary intracellular source, we do not know how much different bio-
chemical processes contribute to the observed heterogeneity (2). It
is neither clear how fluctuations in one cellular process will affect
variation in another nor how an experimental assay could be de-
signed to quantify this effect. Further, we cannot distinguish var-
iation that is extraneous “noise” from that generated by the flow of
information within and between biochemical networks. We will
show that a general technique to decompose fluctuations into their
constituent parts provides a solution to these problems.

Previous work divided variation in gene expression in isogenic
populations into two components (3, 4): intrinsic and extrinsic var-
iation. Both components necessarily include a variety of biochem-
ical processes yet dissecting the effects of these processes has
previously not been possible. Intrinsic variation should be under-
stood as the average “variability” in gene expression between two
copies of the same gene under identical intracellular conditions
(4); extrinsic variation is the additional variation generated by in-
teraction with other stochastic systems in the cell and the cell’s en-
vironment. Single-cell experiments established that stochasticity
generated during gene expression can be substantial in both bac-
teria (3, 5) and eukaryotes (6, 7), but did not identify the biochem-
ical processes that generate this variation, regardless of whether
the variation is intrinsic or extrinsic.

Decomposing Variation in Biochemical Systems
Consider a fluctuating molecular species in a biochemical system
and let the random variable Z be the number of molecules of that
species, for example a transcription factor in a gene regulatory net-
work or the number of active molecules of a protein in a signaling
network. Suppose we are interested in how variation in Z is deter-
mined by three stochastic variables, labeledY 1,Y 2, andY 3 (Fig. 1).

EachY could be, for example, the number of molecules of another
biochemical species, a property of the intra- or extracellular envir-
onment, a characteristic of cell morphology (8), a reaction rate
that depends on the concentration of a cellular component such
as ATP, or even the number of times a particular type of reaction
has occurred. We emphasize that the Y variables are the stochastic
variables whose effects are of interest: They are not all possible
sources of stochasticity.

We wish to determine how fluctuations in Y 1, Y 2, and Y 3 af-
fect fluctuations inZ, the output of the network. Intuitively, we can
measure the contribution of, say, Y 1 to Z by comparing the size of
fluctuations in Z when Y 1 is free to fluctuate with the size of these
fluctuations when Y 1 is “fixed” in some way. Mathematically, we
can fix Y 1 by conditioning probabilities on the history of Y 1: the
value of Y 1 at the present time and at all previous times. By using
histories, we capture the influence of the past behavior of the sys-
tem on its current behavior (9, 10). For example, fluctuations in
protein numbers depend on the history of mRNA levels because
proteins typically do not finish responding to a change in the level
of mRNA before mRNA levels change again. If YH

1 then is the
history ofY 1 up to time t, the expected contribution of fluctuations
in Y 1 to the variation of Z at time t is

EfV ½ZðtÞ� − V ½ZðtÞjYH
1 �g; [1]

where E denotes expectation (here, taken over all possible his-
tories of Y 1) and V denotes variance. The notation ZðtÞjYH is
read as ZðtÞ conditioned on, or given, the history at time t of the
stochastic variable Y . We useE, as for example in E½ZðtÞjYH�, to
denote averaging over all random variables except those given in
the conditioning. Therefore, E½ZðtÞjYH� is itself a random vari-
able: it is a function of the random variables generating YH (we
give a summary of the properties of conditional expectations in
the SI Text). Eq. 1 can be shown to be equal to VfE½ZðtÞjYH

1 �g.

General Decomposition of Variation. To determine the effects of fluc-
tuations in multipleY variables on the variation inZ, we must suc-
cessively condition on groups of Y variables. We prove (Appendix)
that

V ½ZðtÞ�¼EfV ½ZðtÞjðY 1;Y 2;Y 3ÞH�g
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fromsourcesotherthanY1; Y 2; Y 3

þEfV ½E½ZðtÞjðY 1;Y 2;Y 3ÞH�jðY 1;Y 2ÞH�g
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fromY 3

þEfV ½E½ZðtÞjðY 1;Y 2ÞH�jYH
1 �g

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fromY 2

þVfE½ZðtÞjYH
1 �g

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{fromY1

: [2]
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Each of the middle terms can be understood as a mean difference
between two conditional variances. For example, the third term,
generated by fluctuations in Y 2, is equal to the average difference
in the variance ofZwhenY 1 is fixed and whenY 1 andY 2 are fixed:
EfV ½ZðtÞjYH

1 � − V ½ZðtÞjðY 1; Y 2ÞH�g. This term therefore quan-
tifies the additional variation generated by fluctuations in Y 2 when
the history of Y 1 is given. It requires first averaging ZðtÞ over all
other stochastic variables given a particular history of Y 1 and Y 2

(the resulting expectation is a function of YH
1 and YH

2 ), then the
calculation of the variance of this conditional expectation given
the particular history of Y 1 (the variance is taken over all YH

2 ),
and finally the average of the resulting conditional variance over
all YH

1 .
Our decomposition of variance holds at any point in time for

any stochastic dynamic system and can be generalized to any
number of groups of Y variables (Appendix, Eq. 13). It is un-
changed if some of the stochastic Y variables are constant over
time, with conditioning on their histories then being equivalent to
conditioning on the values of the variables. As indicated, Eq. 2
has one term for each of the Y variables. This term becomes zero
if the corresponding Y variable is deterministic or if the history
of that Y variable is independent of ZðtÞ given the history of the
other Y variables involved in the conditioning of that term. The
remaining variance in Z after conditioning on the joint history of
all the Y variables is measured by the first term. It requires the
variance of ZðtÞ given the history of Y 1, Y 2 and Y 3 (the variance
is taken over all other stochastic variables in the system) and then
the average of this variance over all possible histories of Y 1, Y 2,
and Y 3.

Eq. 2 is only unique given a particular choice of the condition-
ing: we could, for example, have decided to condition on the
history of Y 2 in the last term. Mathematically, there is no unique
way to decompose the variance if we wish to determine the effects
of fluctuations of more than one Y variable on variation in Z.
Rather the decomposition is sequential, with all Y variables ap-
pearing in multiple components. Biological systems, however, of-
ten suggest a natural order of conditioning that follows their flow
of control. The hierarchy described by the central dogma is one
example. Nevertheless, freedom in choosing the order of condi-
tioning can be an advantage because different decompositions
give different insights and may be more or less amenable to ex-
perimental analysis.

Defining Transcriptional and Translational Variation. We can identify
the contribution of a subsystem to downstream fluctuations by
conditioning on the history of that subsystem. As an example,
to investigate whether transcription or translation is more “noisy”
during gene expression, we should condition on the history of the
mRNA levels of the gene of interest, MH, and on the history of
all stochastic processes extrinsic to gene expression. Examples of
such processes include the synthesis and turnover of ribosomes
and the rate of cellular growth. We will denote the collection
of extrinsic processes as Ye. If Z is the number of molecules
of the expressed protein, then

V ½ZðtÞ� ¼ EfV ½ZðtÞjðM; YeÞH�g
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{translational

þEfV ½E½ZðtÞjðM; YeÞH�jYH
e �g

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{transcriptional

þ VfE½ZðtÞjYH
e �g

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{from extrinsic effects

:

[3]

Variation from translation is the extra variation generated on
average once the history of fluctuations in mRNA and Ye is given
(the first term in Eq. 3); variation from transcription is the extra
variation generated by fluctuating levels of mRNA given the his-
tory of fluctuations in Ye.

Measuring the Components of Variation
Using Conjugate Reporters.Our general decomposition of variance
for a biochemical system (Appendix, Eq. 13) allows us also to de-
termine exact conditions that reporter systems should satisfy in
order to quantify the different sources of variation. Such condi-
tions establish a basis for experimental design. First, we need a
reporter for the biochemical output of interest, Z. This reporter
could be a fluorescently tagged protein for a genetic network or
the nucleo-cytoplasmic ratio for a fluorescently tagged transcrip-
tion factor that translocates in response to a signaling input.
Second, given a variable of interest, Y , we use a conjugate repor-
ter, Z 0, that by definition must obey two conditions:

i. Z 0ðtÞ is conditionally independent of ZðtÞ given the history
of Y ;

ii. Z 0ðtÞ and ZðtÞ have the same conditional means and the same
conditional variances given the history of Y .

The first, conditional independence, implies that given the
history of fluctuations in Y , no other fluctuations result in the
level of the first reporter correlating (in the most general sense)
with the level of the second (10, 11). The second condition
says that E½Z 0ðtÞjYH� ¼ E½ZðtÞjYH� and V ½Z 0ðtÞjYH� ¼
V ½ZðtÞjYH�, and in practice often means that the reporter system
generating Z 0 is as close a copy as possible of the relevant sub-
system generating Z.

The reporter system is thus designed so that it is only fluctua-
tions in Y that “cause” a covariance between the level of Z
and the level of Z 0. Consequently, measuring this covariance
quantifies the effects of fluctuations in Y on the variance of Z.
Mathematically, Cov½ZðtÞ; Z 0ðtÞ� ¼ VfE½ZðtÞjYH�g, from the
conjugacy of the reporters and the law of total covariance.
Depending on the choice of Y , this covariance gives either the
last term or the sum of the last terms in Eq. 2. The mean squared
difference between the reporters, E½ðZðtÞ −Z 0ðtÞÞ2�∕2, comple-
ments the covariance measurement and gives the sum of the re-
maining terms in Eq. 2 (Appendix).

We need a reporter for each component of Eq. 2 and so four
in total: a reporter for Z from which we can measure V ½Z�, the
variance ofZ across a population of isogenic cells; a reporter con-
jugate to Z given the history of Y 1 whose covariance with Z,
again across an isogenic population, gives the last term of Eq. 2;
a reporter conjugate to Z given the history of Y 1 and Y 2 whose

Fig. 1. Decomposing fluctuations in the output of a biochemical system. In
this example, we consider how fluctuations in three variables, denoted Yi ,
affect fluctuations in Z, the system’s output. Y1 is a biochemical species within
the system being studied; Y2 and Y3 are variables in other stochastic systems
that interact with the system of interest, but whose dynamics are principally
generated independently of that system. We show Y2 and Y3 in the same
system, but they need not be.
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covariance with Z gives the sum of the last two terms of Eq. 2;
and a reporter conjugate to Z given the history of Y 1, Y 2, and Y 3

whose covariance with Z gives the sum of the last three terms
(Appendix). These reporters can in principle be constructed in
the same cell or, if simultaneously distinguishing four reporters
is technically challenging, in pairs in different cells (with the re-
porter forZ and one of its conjugate reporters comprising a pair).

Measuring Transcriptional and Translational Variation. Returning to
the example of measuring transcriptional and translational con-
tributions to variation in gene expression (Eq. 3), we can con-
struct the appropriate conjugate reporters by having a reporter
for the level of the protein and a bicistronic mRNA coding for
two other reporters of the protein—each with a distinct fluores-
cent tag—in the same cell (Fig. 2A). Only fluctuations in mRNA
levels and extrinsic variables generate correlations between the
two bicistronic reporters Z and Z 0 0 (12), and their covariance
therefore equals the sum of the last two terms in Eq. 3 provided
the conditions for conjugate reporters are met. Their mean
squared difference (halved) then measures translational varia-
tion, the first term in Eq. 3. We should therefore construct the
mRNA for all reporters to have identical rates of transcription,
translation, and turnover. The reporters Z and Z 0 are condition-

ally independent given the history of the extrinsic fluctuations,
and their covariance measures the last term in Eq. 3 (Fig. 2B).

Such bicistronic mRNAs have been constructed in Escherichia
coli, but for distinguishable fluorescent proteins tagged to two dif-
ferent rather than identical proteins (13). We can show that these
measurements give an upper bound on the translational variance:
for CheY and CheZ from E. coli’s chemotaxis network, we show
that the average translational variance for the two proteins, nor-
malized by the product of the means of their fluorescence, is less
than 0.22 (SI Text). As we will show later (Eq. 9 and SI Text), tran-
scriptional variation usually dominates translational variation for
typical parameters appropriate for E. coli.

Identifying Sources of Variation in Cell Signaling
Much gene expression is initiated by signaling networks (14), and
we will study examples of such expression to illustrate how to
apply our decomposition (Fig. 2C). The variation observed may
be determined predominantly by stochasticity in upstream signal
transduction rather than by gene expression itself (15) and will
not only be a consequence of biochemical noise but also a signa-
ture of information flowing through the network (16, 17). Fluc-
tuations in gene expression can carry information on environmen-
tal changes because new rates of transcription are often caused
by such changes (18). By having a general decomposition of

Fig. 2. Designs of conjugate reporters to measure the effects of different cellular subsystems on variation in output. (A) To distinguish transcriptional from
translational effects, three reporters are needed including a bicistronic mRNA with two independent ribosome binding sites. (B) Simulated results for the
reporters in A assuming that extrinsic fluctuations affect only the rate of transcription, which fluctuates between three different levels (reactions and para-
meter values are given in SI Text). Blue dots show Z plotted against Z 0: The average spread along the Z ¼ Z 0 diagonal equals the sum of V ½Z� and the extrinsic
variance; the average spread perpendicular to the diagonal equals the sum of the transcriptional and translational variation (SI Text). Red dots show Z plotted
against Z 0 0: the average spread along the diagonal equals the sum of V ½Z�, extrinsic, and transcriptional variation; the average spread perpendicular to the
diagonal equals translational variation. For the parameters chosen (SI Text), the translational noise (coefficient of variation) is 0.12; the transcriptional noise is
0.39; and the extrinsic noise is 0.41. These numbers agree with Eqs. 9 through 11 to two decimal places. (C) Four reporters are needed to distinguish transduc-
tional variation from variation generated by gene expression. Here, a signaling network activates a transcription factor, T , in response to extracellular inputs.
To measure variation in the output Z arising from gene expression, we require two conjugate reporters, Z and Z 0, whose expression is controlled by this
transcription factor. To find a bound on transductional variation, we use two further conjugate and constitutively expressed reporters, Zc and Z 0

c .
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variance, we can distinguish both signaling from expression
effects and information flow from noise.

Informational Variation. We begin by considering variation gener-
ated in response to the extracellular environment. We will con-
dition on the extracellular input signals, X , sensed by the signal-
ing network. This input could be a collection of ligands or, for
example, light intensity for a circadian system. In nature, different
levels of input would correspond to different states of the envir-
onment. IfZ is the number of protein molecules expressed from a
downstream gene at a particular time, then

V ½Z� ¼ EfV ½ZjX �g þ VfE½ZjX �g: [4]

We write Eq. 4 assuming that the biochemical system responds
sufficiently quickly to reach steady state before the input changes
(otherwise the system would still be responding to a previous en-
vironmental change when the next change happens). Therefore,
X in Eq. 4 is not a history but takes a unique, constant value for
each state of the environment. If X is dynamic, then Eq. 4 can be
rewritten replacing X with its history XH.

The variance on the left-hand side of Eq. 4, V ½Z�, is generated
by both variation in the extracellular input X and by variation in
the output Z given a particular value of that input. If we were to
measure cellular variation with the cell in its natural environment
(and could not simultaneously detect the value ofX), we would see
variation in the output because of X taking different values for
different measurements of the output. In the laboratory, however,
we can measure the distribution of output holding the level of X
fixed. For example, with a fluorescent reporter for Z, we can use
either microscopy (15) or fluorescence activated cell sorting (19) to
measure the mean,E½ZjX �, and variance,V ½ZjX �, of the response
conditional on the level of the input. We can then determine V ½Z�
as follows: by calculating the variance of E½ZjX � for a given dis-
tribution of the input, we find VfE½ZjX �g, the last component in
Eq. 4; by calculating the expectation of V ½ZjX � over the distribu-
tion of the input, we findEfV ½ZjX �g, the first component. We will
discuss subsequently different choices of the input distribution.

We interpret the last term of Eq. 4 as the “informational” com-
ponent of the variance of Z. When the means, E½ZjX �, are not
the same for any two values ofX , the size of this component com-
pared to V ½Z� typically indicates how difficult it is for the cell to
decide the state of the environment X from the output of the
sensing network. Because E½ZjX � gives the mean output for a
given input, the magnitude of the variance of E½ZjX � reflects
the extent to which the system can respond to a change of input.
The first term of Eq. 4 describes stochasticity generated by the
system during the process of sensing. The larger this term relative
to V ½Z�, typically the greater the deterioration in transfer of in-
formation about the environmental state to the output.

Unambiguous identification of the environmental state usually
becomes easier as the fraction of the output variance that is in-
formational increases because the distributions of output for each
environmental state then typically overlap less. From information
theory (20), identifying the environmental state is undermined by
such overlap because different environmental states can then
generate the same output (although some states are typically
more likely to generate that output than others). Increased trans-
ductional variation, for example, usually leads to broader and
overlapping output distributions. If the mean output when X
is in state s is μs and the variance of the output is then σ2

s , we
define the informational fraction of output variance as

ιZ ¼ VfE½ZjX �g
V ½Z� ¼

�
1þE½σ2

s �
V ½μs�

�
−1
; [5]

where the expectation and variance are over the probability dis-
tribution for the states of X . As the informational fraction tends

to its maximum value of one, then E½σ2
s � ≪ V ½μs�: the average

“width” of a conditional output distribution typically becomes
much less than the average distance between the means of two
of these output distributions (SI Text). Heuristically, each output
distribution is less likely to overlap with another and the system
should become more efficient at transmitting information.

We can make these ideas more precise by relating the informa-
tional fraction to mutual information, the standard measure of
information transfer (20). When the joint distribution of the input
and output is Gaussian, the mutual information betweenX andZ
equals 1

2
ln½1 − ιZ�−1 (SI Text): an increasing function of ιZ. As the

informational fraction increases so too must the mutual informa-
tion between X and Z, and Z becomes more informative about
the environmental state. We consider V ½μs�∕E½σ2

s � as a general-
ized signal-to-noise ratio that increases whenever ιZ increases. In-
deed, this signal-to-noise ratio simplifies to give the one familiar
from information theory for the jointly Gaussian case (21). The
information capacity is the maximum possible mutual informa-
tion over all potential input distributions (20). In general, we
can show that the capacity is bounded below by the same increas-
ing function, 1

2
ln½1 − ιZ�−1, evaluated using a suitable choice of

the distribution of X (SI Text), and provided the conditional
means μs are not exactly the same for different states of X .
Further, under mild conditions on the joint distribution of the
input and output we can prove that the mutual information
betweenX and Z becomes maximal as the informational fraction
becomes close to one (SI Text). Such a convergence of ιZ occurs,
for example, in the limit of large numbers of molecules. Never-
theless, the informational fraction is not an exact proxy for mu-
tual information because mutual information, unlike ιZ, accounts
for the entire joint distribution of input and output. As a conse-
quence, though, reliably estimating the mutual information can
require substantially more data than reliably estimating the infor-
mational fraction.

Using Informational Variation to Analyze Osmosensing in Budding
Yeast.We can apply these ideas to measurements of the transcrip-
tional response of budding yeast to hyperosmotic stress (Fig. 3A).
Pelet et al. made single-cell measurements of a Yellow Fluores-
cent Protein (YFP) expressed from the promoter of STL1 under
different conditions of osmotic stress by using various concentra-
tions of extracellular salt (Fig. 3B) (19). STL1 is the typical re-
porter for the response to a hyperosmotic change (22). Using this
data and Eq. 5, we can determine the informational fraction for
any particular probability distribution of extracellular salt (the
input X). The distribution of osmotic stress encountered by yeast
in the wild is unknown. We can, however, find distributions of salt
concentration that give high informational fractions, an example
of “inverse ecology” (23–26).

From the Pelet et al. data for the STL1 promoter, we find the
highest informational fraction (of around 0.8) for distributions
that have a high probability of low osmotic stress, zero probability
for intermediate stresses, and a low probability for high stress
(Fig. 3C). Intermediate levels of stress have zero probability in
these distributions because the corresponding expression from
STL1 covers a broad range and extends into the levels of expres-
sion typical of both high and low stress (Fig. 3B). If expression
from STL1 is “read” by the cell to determine the level of osmotic
stress, then this readout is most unambiguous for distributions of
salt concentrations that have these properties (Fig. 3B, Insets). If
we believe that the network has been selected to have an ability
to distinguish different environmental states (27), then we can
go further and suggest that the natural distribution of osmotic
stress experienced by yeast is of the same form. The osmosensing
network then “expects” frequent low level osmotic stress inter-
spersed with rare, high level stress. An alternative distribution
with frequent high and infrequent low level stress has a substan-
tially lower informational fraction (of around 0.15) and does not
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lead to distinct responses from STL1 in different environmental
states. Low levels of expression are now ambiguous about the en-
vironmental state. The joint probability of a low level of expres-
sion and a particular state of the environment is a product of the
probability of the state and the probability of low expression given
that state. These joint (and the posterior) probabilities are now
similar for the states of low and high stress when expression is
low. In the high stress environment, low levels of expression
are quite rare (lying in the long left-hand tail of the output dis-
tribution in Fig. 3B), but the high stress environment itself occurs
with a high probability. Similarly, although the low stress envir-
onment occurs rarely, when it does so, low levels of expression are
highly probable.

We emphasize that this example is intended to be illustrative,
and there are numerous caveats (17): considering expression of
several genes as the output could change the predicted input dis-
tribution; expression of YFP is itself a “noisy” measure of levels
of protein; and inputs in yeast’s natural environment other than
osmotic shock may affect the output response.

Quantifying Components of Variation in Yeast’s Osmosensing.We can
decompose the first, noninformational term in Eq. 4 into a com-
ponent generated by gene expression and a component generated
by fluctuations in processes extrinsic to the expression of Z. Most
experiments are carried out for given levels of inputX , and there-
fore we will consider the decomposition of V ½ZjX �. Any decom-
position of V ½ZjX � can be inserted into Eq. 4 to give the
decomposition of V ½Z�. The transcription factors, T, activated
by upstream signaling (Fig. 3A) are extrinsic to gene expression,
and we will define all other extrinsic processes by Ye\T . The de-
composition of V ½ZjX � is then (Appendix, Eq. 15)

V ½ZjX � ¼ EfV ½ZjðYe\T; TÞH; X �jXg
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{from gene expression

þ VfE½ZjðYe\T; TÞH; X �jXg
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{from extrinsic effects

: [6]

To measure these components, we introduce a reporter Z 0 con-
jugate to Z given bothX and the joint history of the transcription
factors and the other extrinsic variables. Measuring the covar-
iance of Z with this reporter for a given X will determine the
extrinsic variance for that level of input; measuring half of the
mean squared difference between Z and Z 0 will determine the
intrinsic variation arising from gene expression. We can construct
the appropriate conjugate reporter using a second copy of the
promoter and gene for Z but with the corresponding protein
marked with a different fluorescent tag (Fig. 2C).

Combining Eqs. 4 and 6, we can show that informational var-
iation can be the dominant source of heterogeneity. In their study
of osmosensing, Pelet et al. expressed a Cyan Fluorescent Protein
from a second copy of the STL1 promoter in the same cells (19).
This reporter is conjugate to the original YFP reporter (measur-
ing output Z) given the salt concentration, X , and the history of
the extrinsic variables. Its covariance with Z for a given X there-
fore gives the extrinsic variation in Z for that level of X . Using
this data (SI Text) and defining the extrinsic fraction of variance as
the ratio of the extrinsic variance toV ½ZjX �, we can show that the
extrinsic fraction is typically about 45% for each fixed concentra-
tion of salt (noting that VfE½ZjX �g is then zero). When we allow
for a probability distribution over osmotic conditions that gener-
ates a high informational fraction for expression of STL1, we find
that the extrinsic fraction becomes about 90%, of which almost
90% is generated by informational variation. In contrast, salt dis-
tributions that generate a low, positive informational fraction
(such as Fig. 3B, Left Inset) give an extrinsic fraction of around
45%, with almost no contribution from informational variation.
Our results thus imply that it is important to include the effects of
the natural distributions of environmental states when consider-
ing cellular heterogeneity.

Distinguishing Variation due to Gene Expression from Variation due to
Upstream Signaling.We can further decompose the variation of Z
for a given X to distinguish the variation generated by the signal-
ing network from that generated by gene expression:

Fig. 3. Determining informational variation for osmosensing in budding yeast allows us to predict the probability of the different osmotic conditions ex-
perienced by yeast. (A) Hyperosmotic stress is sensed by two pathways in budding yeast, which activate the MAP kinase kinase kinases Ste11 and Ssk2/22 (22).
Both these kinases activate the MAP kinase kinase Pbs2, which in turn activates the MAP kinase Hog1. Activated Hog1 translocates from the cytosol to the
nucleus and initiates new gene expression. (B) Histograms of fluorescence data from a YFP reporter expressed from the promoter for STL1 and measured by
Pelet et al. (19). Fluorescence levels typically increase with increasing extracellular salt: Blue corresponds to zero extracellular salt; dark green to 0.05 M salt; red
to 0.1 M; cyan to 0.15 M; magenta to 0.2 M; and brown to 0.4 M. Approximately 1,000 data points were measured for each concentration (19) and are shown
using 20 bins for the fluorescence level (calculated in log-space). The left inset shows the same histograms but weighted by the probability of the different salt
concentrations for an input distribution that has a low informational fraction of output variance; the right inset is analogous but for an input distribution that
has a high informational fraction of output variance. (C) The five probability distributions for extracellular salt that give the five highest informational fractions
(each approximately equal to 0.8 because of the high degree of overlap of the fluorescence distributions for zero and 0.05 M salt). Each distribution is read
horizontally. We calculated the informational fraction for all possible probability distributions of the six concentrations of extracellular salt that were chosen
experimentally. The informational fraction decreases continuously from around 0.8 to zero. A uniform probability distribution of salt gives an informational
fraction of approximately 0.6.
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V ½ZjX � ¼ EfV ½ZjðYe\T; TÞH; X �jXg
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{from gene expression

þEfV ½E½ZjðYe\T; TÞH; X �jYH
e\T; X �jXg

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{from signal transduction

þ VfE½ZjYH
e\T; X �jXg

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{from other extrinstic effects

; [7]

where the last two terms sum to give the last term of Eq. 6. Trans-
ductional variation at a given X is therefore the extra variation
generating by fluctuating levels of the transcription factor given
the history of the other extrinsic processes and the level of X . To
directly measure the third component of Eq. 7, which arises from
those processes extrinsic to gene expression other than T, would
require a reporter conjugate to Z given the input and the history
of only those extrinsic processes. It is difficult to see how to con-
struct such a reporter without having to create a copy of the up-
stream signaling network and have transduction in that copy
insulated from transduction in the original network.

We can, however, find a lower bound on this extrinsic compo-
nent, and consequently an upper bound on the transductional
component, by introducing a reporter that is conditionally inde-
pendent of Z given the history of all extrinsic variables except the
transcription factor T (and given the input X). An example is a
constitutively expressed reporter, which is conditionally indepen-
dent ofZ given the inputX and the history of Ye\T . This reporter,
denoted Zc, need not have the same conditional mean as Z
(Fig. 2C). Introducing a further reporter conjugate to Zc given
X and YH

e\T , we can prove that (SI Text)

V ½E½ZjYH
e\T; X �jX �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{from other extrinsic effects

≥
Cov½Z; ZcjX �
Cov½Zc; Z 0

c jX � · Cov½Z; ZcjX �; [8]

where Z 0
c is the conjugate reporter to Zc and Cov denotes covar-

iance. This inequality reflects the intuition that an observed cov-
ariance between expression of genes from different networks,
here Z and Zc, is determined by the strength of the extrinsic fluc-
tuations common to both (15, 28). The prefactor corrects for the
different conditional means (given YH

e\T and X) of the two pro-
cesses. Eq. 8 becomes an equality if transduction through the sig-
naling network makes this conditional mean of Z a linear
function of the conditional mean of Zc (SI Text). Eq. 8 implies
an upper bound on the variation generated by signal transduction
because we have already measured the sum of the last two terms
of Eq. 7, the extrinsic variance, using Cov½Z; Z 0jX �. To measure a
component of Eq. 7 and to find bounds on the others, four
reporters are therefore needed in one cell or three pairs of repor-
ters in different cells: Z and Z 0; Z and Zc; and Zc and Z 0

c
(Fig. 2C).

Decomposing Variation in Yeast’s Pheromone Response. Such repor-
ters have already been constructed by Colman-Lerner et al., who
studied the pheromone pathway in budding yeast (15). In the pre-
sence of extracellular pheromone, this pathway activates a MAP
kinase cascade and a transcription factor, Ste12 (29). Colman-
Lerner et al. analyzed variation by equating the output of the
pathway to the product of the downstream gene expression mea-
sured per unit of the upstream signaling response and the re-
sponse from upstream signaling itself. They constructed, among
others, three strains: one expressing two fluorescent proteins
from two copies of the pheromone-responsive promoter PRM1
(equivalent toZ andZ 0); one expressing two fluorescent proteins
from two copies of the promoter for actin (equivalent to Zc and
Z 0

c); and another expressing fluorescent proteins from the pro-
moters of PRM1 and actin (equivalent to Z and Zc). We can
therefore reanalyze their data using Eq. 7 (SI Text). We find that

the fraction of variance in Z generated by gene expression is low
and approximately 0.1; that the fraction generated by processes
extrinsic to gene expression (other than fluctuations in the tran-
scription factor Ste12) is greater than approximately 0.5 (from
Eq. 8); and that the fraction generated by signal transduction
is therefore less than approximately 0.4 for cells exposed to
1.25 nM of pheromone. We can conclude that signal transduction
is a less substantial source of variation than other processes ex-
trinsic to gene expression for these data.

Analyzing Variation in Models of Biochemical Systems
Given that we now have a general method for decomposing
variance, can we make predictions of how the components of
variance will behave as properties of the system change? Indeed,
our method of conjugate reporters can also be used to compute
the components of the variance for a given model. We can either
use the chemical master equation to model both reporters and to
calculate their covariance (30) or use Monte Carlo simulations to
numerically estimate the covariances of the reporters (31).

Calculating Transcriptional and Translational Variation. For example,
we calculated the three components of Eq. 3 for a standard
model of gene expression (32) and with the assumption that the
extrinsic variables Ye are dominated by fluctuations in the rate of
transcription (33). At steady state, with Z being the number of
proteins, we find that the translational and the transcriptional
components are (SI Text)

EfV ½ZðtÞjðM; YeÞH�g ¼ E½Z�; [9]

and

EfV ½E½ZðtÞjðM; YeÞH�jYH
e �g ¼ τm

τm þ τz

E½Z�2
E½M� ; [10]

where τm denotes the lifetime of the mRNA and τz denotes the
lifetime of the protein. If τe is the lifetime of fluctuations in the
rate of transcription, then the extrinsic component is

VfE½ZðtÞjYH
e �g ¼ τeðτzτe þ τmτe þ τmτzÞ

ðτm þ τzÞðτe þ τmÞðτe þ τzÞ
E½Z�2η2e ; [11]

where ηe is the coefficient of variation of the fluctuations in the
rate of transcription (their standard deviation over their mean).
For this model, the translational component is equal to the mean
number of proteins and the transcriptional component is deter-
mined partly by the coefficient of variation of fluctuations in
mRNA levels (the square of which is the reciprocal of E½M�)
scaled by a function of the ratio of the mRNA to protein lifetimes.

Intrinsic and Extrinsic Variation. Throughout, we condition on the
histories of stochastic variables (9–11, 34), and such conditioning
is needed for a general definition of intrinsic and extrinsic varia-
tion because it allows for extrinsic variables that fluctuate on any
timescale. It we let Ye denote all extrinsic variables, then by con-
ditioning on the history of Ye we have

V ½ZðtÞ� ¼ EfV ½ZðtÞjYH
e �g

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{intrinsic variation

þ VfE½ZðtÞjYH
e �g

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{extrinsic variation

; [12]

for expression of a protein Z. This decomposition is mathemati-
cally analogous to that given originally (4), except that the con-
ditioning is on the history of the extrinsic variables rather than on
just a single value of each extrinsic variable. The original condi-
tioning is only valid if the extrinsic variables change substantially
more slowly than the dynamics of the system of interest (34, 35).
This change in definition alters neither the interpretation of
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intrinsic variation as the average variability in gene expression
between two identical copies of the gene subject to the same ex-
trinsic fluctuations (empirically, the mean squared difference in
levels of expression from the two genes) nor the measurements
needed for experimental assays (34). These measurements are
the covariance between a reporter for Z and another reporter
conjugate given the history of the extrinsic variables (3), as re-
quired by our general decomposition.

Intrinsic variation is often heuristically understood as the “var-
iation generated inherently” by the biochemical reactions that
comprise the system (36, 37). However, intrinsic variation also
depends on the environment in which the system is embedded,
that is on the extrinsic processes themselves (4, 34, 35). This de-
pendence is made explicit in Eq. 12: V ½ZðtÞjYH

e � is unambigu-
ously the variance due to processes that are not extrinsic, but
its magnitude depends on the realized history of Ye. We must
therefore take its expectation over all such histories to obtain
a useful numerical measure. We can also write the intrinsic var-
iation as equal to the expectation of fZðtÞ −E½ZðtÞjYH

e �g2, that
is the average squared deviation ofZðtÞ away from its mean given
the history of the extrinsic variables.

An implication is that attempting to validate a model by com-
paring its variance components with experimental measurements
can be problematic because the model must include the extrinsic
processes appropriately. Detailed models of these processes,
however, may not always be necessary. For example, a model spe-
cifying a mean, variance, and autocorrelation function for an ex-
trinsic process could potentially give informative comparisons
with data. Importantly, once a model has been selected and para-
metrized statistically, we can use conjugate reporters to evaluate
its different components of variation in silico, some of which may
not be easily measured experimentally. As an illustration, we con-
sidered constitutive gene expression for four different models
each of which has a single source of extrinsic fluctuations, in
either degradation or synthesis of mRNA or protein (SI Text).
Calculating the intrinsic variation using the master equation aug-
mented with a conjugate reporter, we found that extrinsic fluctua-
tions in some processes increased the measurement of intrinsic
noise in protein levels (the variability between two conjugate re-
porters normalized by the product of their means), and extrinsic
fluctuations in others decreased it, relative to a model with no
extrinsic fluctuations. Therefore, predictions from a model with
only intrinsic fluctuations cannot even act as an upper or lower
bound on the intrinsic noise measured experimentally. Once a
model has been validated statistically, perhaps using time-series
data, then results such as Eqs. 9–11 can be used to understand
and predict the importance of different sources of variation.
For example, Eq. 9 predicts that transcriptional variation usually
dominates translational variation for typical parameters appro-
priate for E. coli (SI Text).

Finally, we point out that we have chosen an “operational” de-
finition of intrinsic variation—the average variability in gene ex-
pression between two copies of the same gene under identical
cellular conditions—in part because of the ease of constructing
reporters by copying the promoter and other control regions
of a gene of interest. If desired, this definition can be made more
inclusive: the average variability of the output between two copies
of the same subsystem under identical cellular conditions. Such a
definition, for example, could include fluctuations in signal trans-
duction in the example of Fig. 2C as “intrinsic,” with the first
component in Eq. 4 then constituting the intrinsic variation.

Discussion
A challenge when investigating variation in any biochemical net-
work is the influence of the wider stochastic system in which the
network is embedded. The general decomposition of variance we
have introduced allows the variance to be decomposed into as
many components as there are potential sources of variation and

provides exact mathematical expressions for each component.
Further, we show that all components can be measured using re-
porters that are conjugate to the reporter for the original system.
For each component, we give two conditions that these reporters
must satisfy.

Through its use of conjugate reporters, our approach provides
both a means to compute the magnitude of different components
of variance for mathematical models and a framework for think-
ing about experimental approaches to quantifying sources of
variation. Although we have described experimental realizations
of conjugate reporters for two different types of decomposition
(Fig. 2), the design of conjugate reporters to measure some com-
ponents of variation may be challenging. For example, fluctua-
tions in the numbers of mitochondria have been proposed to
generate much of the variation in the rates of transcription seen
in mammalian cells (33). To measure the contribution of such
fluctuations to variation in gene expression, our decomposition
requires a reporter conjugate to the output given only the history
of the levels of mitochondria. Currently, constructing such a re-
porter is difficult, but this prediction in itself is important. Know-
ing the exact conditions required for a reporter is the first step in
experimental design. If those conditions are challenging to estab-
lish, the experimenter can consider different decompositions of
variance or alternative approaches. Using our techniques for
quantifying sources of variation to analyze models whose para-
meters have been fitted to experimental data, for example, pro-
vides such an alternative approach. More generally, advances in
synthetic biology that aim to create biochemistry “orthogonal” to
the endogenous biochemistry may make suitably conjugate repor-
ters commonplace (38).

Using our decomposition, we can identify a component of the
variance determined by environmental signals or inputs—the in-
formational variance—and as such can disentangle fluctuations
that carry information from those that disrupt it. For given input
distributions, measuring the fraction of the variance in the output
that is informational allows quantitative comparison of the effi-
cacy of different biochemical networks for information transfer
and so addresses why one network architecture might be selected
over another (39). The informational component can also be used
for “inverse ecology”: to determine the distribution of inputs
from which the network is best able to unambiguously transduce
an input signal given the network’s structure (Fig. 3). Our analysis
of data for osmosensing in budding yeast implies that the majority
of variation can be generated by the response of the network to
extracellular signals (we find that such environmental stochasti-
city can generate 80% of the variation in the response of the os-
mosensing network in yeast).

Stochasticity is now believed to pervade molecular and cellular
biology, but the principal biochemical processes that generate
stochasticity are mostly unknown. Our general decomposition
of variance, each component of which can be evaluated with sui-
tably constructed conjugate reporters, provides a means to quan-
tify the effect of fluctuations in one biochemical process on the
variation in the constituents of another. It provides a measure of
the contribution of information flow to biochemical variation: a
contribution that can be the dominant source of variation, at least
for some distributions of input. Our approach thus provides a
mathematical foundation for studies investigating the biological
role of stochasticity and variation in cellular decision-making.

Appendix
General Decomposition of Variance for Stochastic Dynamic Systems.
We denote a stochastic dynamic system with n variables in all
by Y ¼ fY 1t;…; Yn−1;t; Ztgt≥0 and write, for example, Y 1t in
place of Y 1ðtÞ. We will use Hjt to denote the history at time t
of Yj, where Yj is some subset of the n variables of the full system.
(The subscript j will index the different subsets or collections of
variables; the subsets may overlap.) We note for those familiar
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with stochastic process theory thatHjt ¼ σðYjs; s ≤ tÞ. Intuitively,
knowledge of Hjt is equivalent to knowing the trajectory of all of
the variables in the vector Yj for times s up to and including
time t.

Our general theorem for decomposition of variance is as fol-
lows. Let Y be a stochastic dynamic system with a variable of in-
terest Zt whose variance exists (is finite). Suppose we have the
historiesH1t;H2t;…;Hkt, k ≥ 2, each one for a different collec-
tion of variables of the system. Then,

V ½Zt� ¼ EfV ½ZtjH1t;H2t;…;Hkt�g

þ∑
k

j¼2

EfV ½E½ZtjH1t;…;Hjt�jH1t;…;Hj−1;t�g

þ VfE½ZtjH1t�g: [13]

Proof:We now derive Eq. 13 (omitting the subscripts t in order to
give the proof in its most general form where each Hj is any σ
field). To see that Eq. 14 below holds, notice that terms cancel to
give the identity V ½Z� ¼ EfV ½Z�g:
V ½Z� ¼ EfV ½ZjH1;H2;…;Hk�g

þ∑
k

j¼2

Ef−V ½ZjH1;…Hj� þ V ½ZjH1;…;Hj−1�g

þEf−V ½ZjH1� þ V ½Z�g: [14]

For any two σ fields G1;G2, a conditional version of the law of
total variance is seen to hold:

V ½ZjG1� ¼ V ½E½ZjG1;G2�jG1� þE½V ½ZjG1;G2�jG1�; [15]

and hence on taking (unconditional) expectations of both sides
and rearranging,

EfV ½ZjG1�g −EfV ½ZjG1;G2�g ¼ EfV ½E½ZjG1;G2�jG1�g;

because EfE½V ½ZjG1; G2�jG1�g ¼ EfV ½ZjG1; G2�g. Therefore,
the summation in Eq. 14 simplifies to give∑k

j¼2EfV ½E½ZjH1;…;
Hj�jH1;…;Hj−1�g, [by setting G1 ¼ σðH1;…;Hj−1Þ and G2 ¼
Hj for j ¼ 2;…; k]. Using the law of total variance to simplify
the last two terms of Eq. 14 completes the proof. When k ¼ 1
Eq. 13 simplifies to give a two-way decomposition: a measure the-
oretic version of the law of total variance. The two-way decom-
position applied to the internal history ðH1t;H2t;…;HjtÞ is
V ½Zt�¼EfV ½ZtjH1t;H2t;…;Hjt�gþVfE½ZtjH1t;H2t;…;Hjt�g:
It then follows from Eq. 13 that for any j ≥ 2,

VfE½ZtjH1t;H2t;…;Hjt�g ¼ VfE½ZtjH1t�g

þ∑
j

i¼2

EfV ½E½ZtjH1t;…;Hit�jH1t;…;Hi−1;t�g: [16]

Conjugate Reporters Identify all Components of the Variance Decom-
position.We define a reporter Z 0

t to be first-moment conjugate to
Zt for the history Ht if (i) Zt and Z 0

t are conditionally indepen-

dent given Ht and (ii) E½ZtjHt� ¼ E½Z 0
t jHt�. (It is implicit in our

definition that neither the history Ht nor the process Zt is “af-
fected” by introducing the reporter Z 0

t into the system.) The fol-
lowing derivation shows that the measurement of variance
components using the (contemporaneous) covariance of conju-
gate reporters at time t remains valid despite the “dependence”
of Zt on the histories of the relevant fluctuations as well as on the
value of those variables at time t [see also Hilfinger and Pauls-
son (34)].

We wish to measure each of the variance components in the
decomposition given by Eq. 13. These measurements require a
reporter Z 0

jt that is first-moment conjugate to Zt for the history
ðH1t;…;HjtÞ for each j ¼ 1;…; k, which gives ðkþ 1Þ reporters
in all including the original one for Zt. Measurement of each of
their covariances with Zt, denoted Cov½Zt; Z 0

jt�, identifies all of
the ðkþ 1Þ terms in the decomposition.

Proof: That Cov½Zt; Z 0
jt� ¼ VfE½ZtjH1t;…;Hjt�g follows directly

from the law of total covariance after noting that condition (i) for
the conjugacy of the reporter (conditional independence) implies
that the conditional covariance Cov½Zt; Z 0

jtjH1t;…;Hjt� equals
zero. Alternatively, the property may be derived as follows. Con-
dition (ii) for the conjugacy of the reporter implies that
E½Zt� ¼ E½Z 0

jt�, and thus

Cov½Zt; Z 0
jt� ¼ EfE½ZtZ 0

jtjH1t;…;Hjt�g − E½Zt�2

¼ EfE½ZtjH1t;…;Hjt�2g
− fE½E½ZtjH1t;…;Hjt��g2

¼ VfE½ZtjH1t;…;Hjt�g;

where we have again used the conditional independence of con-
dition (i). It follows from Eq. 16 that Cov½Zt; Z 0

jt� identifies the
sum of the last j terms in the decomposition in Eq. 13. Therefore,
Cov½Zt; Z 0

jt� − Cov½Zt; Z 0
j−1;t� equals the jth term from the end of

the equation, for j ¼ 1;…; k. The first term of Eq. 13 is obtained
as V ½Zt� − Cov½Zt; Z 0

kt�.
Furthermore, suppose that, for j ¼ 1;…; k, Z 0

jt has the same
second conditional moment as Zt : E½Z2

t jH1t;…Hjt� ¼
E½ðZ 0

jtÞ2jH1t;…;Hjt�. We then say that Z 0
jt is conjugate to Zt

for the history H1t;…;Hjt. The variance now decomposes as

V ½Zt� ¼
1

2
E½ðZt −Z 0

jtÞ2� þ Cov½Zt; Z 0
jt�; [17]

because E½ðZt − Z 0
jtÞ2� ¼ EfE½ðZt − Z 0

jtÞ2jH1t;…;Hjt�g ¼ 2E
fE½Z2

t jH1t;…;Hjt� − E½ZtjH1t;…;Hjt�2g ¼ 2EfV ½ZtjH1t;…;
Hjt�g. Eq. 17 formally justifies the empirical measure of intrinsic
noise proposed by Elowitz et al. (3).
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A Brief Primer on Conditional Expectations
Conditional expectations are not commonly used outside of prob-
ability and statistics. We present here a short introduction and list
of their properties.

For two random variables X and Y , the conditional expecta-
tion E½X jY � is itself a random variable because it is a function of
the random variable Y . For continuous random variables,
E½X jY � is defined as

E½X jY ¼ y� ¼
Z

dx x pðxjyÞ; [S1]

where pðxjyÞ is the conditional probability density ofX given Y . It
satisfies pðxjyÞ ¼ pðx; yÞ∕pðyÞ, by Bayes’s rule. The conditional ex-
pectation has the following properties for any three random vari-
ables X; Y and Z:

i. If X and Y are independent, then

E½X jY � ¼ E½X �: [S2]

ii. If X and Y are conditionally independent given Z, then

E½X jY; Z� ¼ E½X jZ�: [S3]

iii. For real constants a and b

E½aX þ bY jZ� ¼ aE½X jZ� þ bE½Y jZ�: [S4]

iv. If knowing the random variable Z implies that X is known,
then

E½XY jZ� ¼ XE½Y jZ� [S5]

and so E½gðZÞjZ� ¼ gðZÞ for any (measurable) function gðZÞ.
v. If knowing Z implies that X is known, then

E½Y jX � ¼ E½E½Y jZ�jX �: [S6]

vi. For any Y,

E½E½X jY �� ¼ E½X �: [S7]

The conditional expectation E½X jY � is, in the sense of mini-
mizing the mean squared error, the best approximation to X .
For any real-valued function f ðYÞ, it can be shown that

E½ðX − f ðY ÞÞ2� ≥ E½ðX −E½X jY �Þ2�: [S8]

Useful Additional Properties of Conditionally Independent
Reporters
Suppose that Z 0

t is conditionally independent of Zt given
ðX;HtÞ, where X is a time invariant random variable (for exam-
ple, one controlled in an experiment or set by the environment)
and Ht is some history. Then

Cov½Zt; Z 0
t jX � ¼ EfE½ZtZ 0

t jX;Ht�jXg −EfE½ZtjX;Ht�jXg
· EfE½Z 0

t jX;Ht�jXg
¼ Cov½E½ZtjX;Ht�; E½Z 0

t jX;Ht�jX �;
[S9]

where we have used the conditional independence of Zt and
Z 0

t . If Z 0
t is also first-moment conjugate to Zt for ðX;HtÞ,

then we shall show that the covariance of the reporters condi-
tional on X identifies the second component of the decomposi-
tion of conditional variance, V ½ZtjX � ¼ E½V ½ZtjX;Ht�jX �þ
V ½E½ZtjX;Ht�jX �. When the two reporters are first-moment
conjugate, E½ZtjX;Ht� ¼ E½Z 0

t jX;Ht�, which implies that
E½ZtjX � ¼ E½Z 0

t jX �, and therefore

Cov½Zt; Z 0
t jX � ¼ Cov½E½ZtjX;Ht�; E½Z 0

t jX;Ht�jX �
¼ VfE½ZtjX;Ht�jXg: [S10]

Consequently, the average conditional covariance (averaging
with respect to the distribution of X) gives EfCov½Zt; Z 0

t jX �g ¼
EfV ½E½ZtjX;Ht�jX �g.

Transcriptional and Translational Variance: Reaction
Network and Parameter Values Used in Simulations for
Fig. 2B
We used the Facile compiler (1) and the EasyStoch simulator (2),
which encodes the Gibson–Bruck (3) version of the Gillespie al-
gorithm (4). We specify the model and the parameters used to
generate the data underlying Fig. 2B in the main paper in the
format employed by Facile (see Table S1). Comments are marked
with a hash and the initial numbers of molecules are denoted with
N. Any chemical species not specified initially has zero molecules.

For convenience, we simultaneously simulate three reporters
(the original system of interest, a copy, and a bicistronic repor-
ter). To model extrinsic fluctuations in v0 the rate of transcription,
we use ‘dummy’ chemical species, S1, S2, and S3, to control the
propensity of transcription. Only one of these species exists at any
given time and transitions between the three forms of S generate
transitions in the value of v0. We denote the protein reporter
equivalent to Z in Fig. 2A as B, the reporter equivalent to Z 0

as A, and the reporter equivalent to Z 0 0 as C.

Interpreting Scatter Plots of Measurements of Reporters
Plotting single-cell measurements of one reporter, Z, against
measurements for a reporter conjugate to Z given some history
YH (denoted Z 0) gives a scatter plot where the extents of the
scatter of points parallel and perpendicular to the Z ¼ Z 0 diag-
onal measure different components of the variance. A typical ex-
ample is shown in Fig. S1. Each point represents measurements
of a reporter and its conjugate in a single cell and has coordinates
ðZ; Z 0Þ. Note that each reporter has the same mean value from
the conditions of conjugacy. For each point, we can define d⊥,
which measures the distance from the point to the Z ¼ Z 0 diag-
onal, and d∥, which measures the distance along the diagonal that
the point lies from the point corresponding to the mean va-
lue (Fig. S1).
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We can show that the mean value of d2
⊥, the spread of the

points perpendicular to the Z ¼ Z 0 diagonal, satisfies

E½d2
⊥� ¼

1

2
E
�
ðZ −Z 0Þ2

�
[S11]

because the point of intersection (red dot in Fig. S1) is
ððZþZ 0Þ∕2; ðZþZ 0Þ∕2Þ. For any point ðZ; Z 0Þ, d2

⊥ is then

d2
⊥ ¼

�
Z 0 −

ZþZ 0

2

�
2

þ
�
Z −

ZþZ 0

2

�
2

; [S12]

giving Eq. S11 taking expectations. The right-hand side of Eq. S11
corresponds generally to a sum of terms in the decomposition of
variance, with the particular sum being determined by the choice
of the conditioning used to select the conjugate reporter.

Similarly, the mean value of d2
∥ , the spread of the points along

the diagonal, satisfies

E½d2
∥ � ¼ Cov½Z; Z 0� þ 1

2
E
�
ðZ − Z 0Þ2

�
þ Cov½Z; Z 0�: [S13]

If E½ðZ −Z 0Þ2�∕2 corresponds to a sum of terms in the decom-
position of variance, then Cov½Z; Z 0� corresponds to the sum of
the remaining terms. By definition,

d2
∥ ¼

�
ZþZ 0

2
−E½Z�

�
2

þ
�
ZþZ 0

2
− E½Z�

�
2

¼ 1

2

�
Z −E½Z� þZ 0 −E½Z�

�
2

; [S14]

implying that

E½d2
∥� ¼ V ½Z� þ Cov½Z; Z 0� [S15]

and giving Eq. S13 because V ½Z� ¼ E½ðZ −Z 0Þ2�∕2þ
Cov½Z; Z 0� (Eq. 17 in the main text).

Translational Variation: Analyzing the Data of Kollmann
et al.
Using similar arguments to those given in the Appendix section of
the main text, we can also show that

E½ðZ −ZcÞ2� ¼ EfV ½ZjYH�g þEfV ½ZcjYH�g
þEfðE½ZjYH� −E½ZcjYH�Þ2g [S16]

if Z and Zc are conditionally independent given some history
YH. Consequently,

E½ðZ −ZcÞ2� ≥ EfV ½ZjYH�g þEfV ½ZcjYH�g; [S17]

where both terms on the right-hand side can be measured using
conjugate reporters with equal second conditional moments:
EfV ½ZjYH�g is equal to E½ðZ − Z 0Þ2�∕2 if Z 0 is a reporter
conjugate to Z given YH, and EfV ½ZcjYH�g is equal to
E½ðZc −Z 0

cÞ2�∕2 if Z 0
c is a reporter conjugate to Zc given YH.

Kollmann et al. (5) measured gene expression of the chemo-
taxis proteins CheY, tagged with YFP, and CheZ, tagged with
CFP, with both proteins expressed from the same mRNA.
CheY-YFP and CheZ-CFP should be conditionally independent
given the joint history of the levels of the bicistronic mRNA,
M, and the stochastic variables extrinsic to gene expression,
Ye. We can therefore use Eq. S17 with CheY-YFP denoted by

Z, CheZ-CFP denoted by Zc, and YH being the joint history
of M and Ye. Kollmann et al. found that

E½ðZ −ZcÞ2� ≃ 2 × 0.22E½Z�E½Zc�; [S18]

where Z and Zc are measured in fluorescence units (5). Conse-
quently,

1

2
½EfV ½ZjðM; YeÞH�g
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{translational for CheY

þEfV ½ZcjðM; YeÞH�g
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{translational for CheZ

�
≤ 0.22E½Z�E½Zc�; [S19]

and therefore the average translational variance for the two pro-
teins, normalized by the product of their mean fluorescences, is
less than 0.22.

Finding Bounds on Components of the Variance
Decomposition
Suppose that the reporter Z 0 0

t is conditionally independent of the
reporter Zt given ðX;HtÞ, where X is again a time invariant ran-
dom variable. To find a lower bound onVfE½ZjX;Ht�g, we begin
with a conditional form of the Cauchy–Schwarz inequality:

Cov½W;W 0 0jX �2 ≤ V ½W jX � · V ½W 0 0jX �; [S20]

for arbitrary random variables W and W 0 0. From Eq. S9,

Cov½Zt; Z 0 0
t jX � ¼ Cov½E½ZtjX;Ht�; E½Z 0 0

t jX;Ht�jX �;

and therefore the Cauchy–Schwarz inequality directly implies
that

VfE½ZtjX;Ht�jXg ≥
Cov½Zt; Z 0 0

t jX �2

V
�
E½Z 0 0

t jX;Ht�
����X

� ; [S21]

where the denominator VfE½Z 0 0
t jX;Ht�jXg can itself be mea-

sured by the covariance (conditional on X) between Z 0 0
t and a

reporter conjugate to Z 0 0
t for the conditioning ðX;HtÞ. The low-

er bound in Eq. S21 becomes an equality when E½ZtjX;Ht� is a
linear function of E½Z 0 0

t jX;Ht�.

Distinguishing Variation due to Gene Expression from
Variation due to Signal Transduction: Analyzing the Data of
Colman-Lerner et al.
Colman-Lerner et al. used the promoter for PRM1 driving YFP
to quantify the response of budding yeast to pheromone (6).
From Eqs. 7 and 8, we can write an inequality for the variation
generated by signal transduction:

EfV ½E½ZjðYe\T; TÞH; X �jYH
e\T; X �jXg

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{from signal transduction given X

≤ Cov½Z; Z 0jX � − Cov½Z; ZcjX �2
Cov½Zc; Z 0

c jX � ; [S22]

whereZ is a reporter for the output of the system;Z 0 is a reporter
conjugate to Z given the history of all extrinsic variables; Zc is a
reporter for a constitutively expressed gene; and Z 0

c is a reporter
conjugate to Zc given the history of extrinsic variables (Fig. 2C).
Alejandro Colman-Lerner kindly provided: average fluorescence
measurements (the total fluorescence in individual cells divided
by the area of the cells) of a strain expressing both YFP and CFP
from two copies of the promoter for PRM1 across a population of
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172 cells (corresponding to Z and Z 0 in Eq. S22); average fluor-
escence measurements of a strain expressing both YFP and CFP
from two copies of the promoter for ACT1 (actin) across a po-
pulation of 292 cells (corresponding to Zc and Z 0

c in Eq. S22);
and average fluorescence measurements of a strain expressing
CFP from the promoter of ACT1 and YFP from the promoter
of PRM1 across a population of 233 cells.

To adjust for the different brightness of CFP and YFP, we cor-
rected the measurements of CFP in the strain expressing CFP and
YFP from the promoter of PRM1 to have the same median as the
measurements of YFP.We corrected the measurements of CFP in
the strain expressing CFP and YFP from the promoter of ACT1
and the measurements of CFP in the strain expressing CFP from
ACT1 and YFP from the promoter of PRM1 to have the same
median as measurements of YFP in the strain expressing CFP and
YFP from the promoter for ACT1.

Both the CFP and YFP measurements should also be cor-
rected for cellular autofluorescence, although autofluorescence
is less of a problem for YFP because it is brighter. We were
unable to correct the data for autofluorescence, and numerical
values should be interpreted with this caveat.

The Informational Fraction of Variance
Some Intuition. For an output Z and input X , let E½ZjX � ¼ μðXÞ
and V ½ZjX � ¼ σ2ðXÞ. Then,

V ½Z� ¼ VfE½ZjX �g þEfV ½ZjX �g ¼ V ½μðXÞ� þE½σ2ðXÞ�;
[S23]

and the informational fraction of the output variance is

ιZjX ¼ VfE½ZjX �g
V ½Z� ¼ V ½μðXÞ�

V ½μðXÞ� þE½σ2ðXÞ�

¼
�
1þE½σ2ðXÞ�

V ½μðXÞ�
�

−1
: [S24]

In the main text, we denote ιZjX by ιZ.
Imagine drawing two independent realizations of the input X

from its distribution, denoted byX1; X2. Write the corresponding
expected outputs conditional on the realized inputs as μ1 and μ2,
where μi ¼ μðXiÞ. Then, the typical distance between the two
conditional means obtained is

1

2
E½ðμ1 − μ2Þ2� ¼ V ½μi�; [S25]

because E½μ1μ2� ¼ E½μ1�2. The expected conditional variance for
each draw is simply E½σ2

i �. Therefore, as the informational frac-
tion tends to one,

1

2
E½ðμ1 − μ2Þ2� ≫ E½σ2ðXÞ�; [S26]

and the typical distance between the means of a pair of condi-
tional distributions for the output Z becomes much larger than
the expected variability or “width” of those distributions: The
conditional output distributions typically overlap less. Heuristi-
cally, each output distribution is less likely to overlap with an-
other and the system should become more efficient at transmit-
ting information. We make these ideas more precise by providing
formal connections between the informational fraction and infor-
mation theory below.

Input and Output with a Jointly Gaussian Distribution and a General
Upper Bound on the Conditional Entropy of the Output.Consider the

input and output ðX; ZÞ to be a continuous random vector, with
the support of Z equal to ð−∞;∞Þ. Let z be the rescaled output
with variance equal to 1, z ¼ Z∕V ½Z�1∕2. The rescaling affects
neither the informational fraction, nor the mutual information
of input and output (7). Note that 1 − ιzjX ¼ EfV ½zjX �g and that
the entropy of a Gaussian distribution with variance v is equal to
1
2
lnð2πevÞ. Now V ½zjX ¼ x� ≥ 1

2πe expf2hðzjX ¼ xÞg because the
Gaussian distribution has the maximum entropy for a given var-
iance. It follows after taking the expectation of both sides of the
inequality and applying Jensen’s inequality that

1 − ιZjX ¼ EfV ½zjX �g ≥
1

2πe
expf2hðzjXÞg;

where hðzjXÞ ¼ Ex½hðzjX ¼ xÞ�. Therefore, an upper bound for
the conditional entropy of the rescaled output is given by

hðzjXÞ ≤ 1

2
lnf2πe½1 − ιZjX �g: [S27]

The upper bound decreases as ιZjX increases, placing an upper
limit on how uncertain the output can be given the state of
the input.

When the signaling mechanism obeys “Gaussian statistics,” or
more precisely the conditional distribution of output given input,
pðzjXÞ, is Gaussian with variance not depending on X , it is seen
that V ½zjX �g ¼ 1

2πe expf2hðzjXÞg and therefore Eq. S27 holds
with equality in this case. If the input X is also normally distrib-
uted then ðX; ZÞ has a bivariate normal distribution and z is
therefore normally distributed with variance equal to 1. The mu-
tual information IðX ;ZÞ ¼ IðX ; zÞ. It follows directly that

IðX ;ZÞ ¼ hðzÞ − hðzjXÞ ¼ 1

2
lnf2πeg − 1

2
lnf2πe½1 − ιZjX �g

¼ −
1

2
lnf1 − ιZjXg; [S28]

which is familiar on recognizing that ιZjX ¼ Corr½Z; X �2, because
E½ZjX � is a linear function of X (see Eq. S31) for a bivariate
normal distribution. Throughout, we define the correlation of
any two random variables T; U to be Corr½T; U� ¼ Cov½T; U�∕
V ½T�12V ½U�12.

A Lower Bound on Information Capacity Is Set by ιZjX. We will now
prove that when the conditional means μðXÞ are different for all
values of X , the information capacity C of the biochemical me-
chanism satisfies the lower bound given by

C ¼ sup
pðXÞ

IðX ;ZÞ ≥ 1

2
ln½1 − ιZj ~X �−1; [S29]

where the supremum (“maximum”) is taken over a set of possible
input distributions, S. The informational fraction is evaluated for
an input distribution corresponding to a Gaussian distribution for
μðXÞ. The higher the informational fraction, the larger the lower
bound on the capacity.

Consider the mechanism

W→
f
X →

pðZjXÞ
Z; [S30]

where pðZjXÞ represents the biochemical transduction,
Z ∈ ð−∞;∞Þ,W ∈ ð−∞;∞Þ, and the function f is a continuously
differentiable, one-to-one mapping. Where necessary, we trans-
form the biophysical output (which is often positive), for example
by taking its logarithm, so that Z is real-valued. For any distribu-
tion pðW Þ, we have that IðW ;ZÞ ¼ IðX ;ZÞ (7).

We will need the following result. For any two random vari-
ables T; U , the informational fraction satisfies the equality
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ιUjT ¼ CorrðU; E½UjT�Þ2; [S31]

from the definition of correlation and because

CovðU; E½UjT�Þ ¼ EfE½ðU −E½U�ÞðE½UjT� −E½U�ÞjT�g
¼ EfE½UjT�2 − 2E½U�E½UjT� þ E½U�2g
¼ VfE½UjT�g:

Therefore, ιZjW ¼ CorrðZ; E½ZjW �Þ2: Furthermore, if E½ZjW � is
a linear (affine) function of W , then CorrðZ; E½ZjW �Þ ¼
CorrðZ; W Þ and ιZjW ¼ CorrðZ; W Þ2 for any distribution pðW Þ.

Notice that for the mechanism in Eq. S30, the random vari-
ables E½ZjX � and E½ZjW � are equal because f is an invertible
function and conditioning on X is therefore equivalent to condi-
tioning on W (mathematically, the conditioning sigma field
σðXÞ ¼ σðW Þ). It follows immediately that the corresponding in-
formational fractions are equal:

ιZjW ¼ ιZjX; [S32]

where we have used V ½ZjX � ¼ V ½ZjW �.
The essential insights in the proof of the lower bound in

Eq. S29 are to approach the problem via the “augmented” me-
chanism in Eq. S30 and to then notice that a certain choice of
the function f will result in E½ZjW � being a linear function of
W . This choice is useful because it is known how to bound the
mutual information from below when the input is Gaussian, using
the squared correlation of input and output. As we have seen,
when the conditional expectation is a linear function of W ,
ιZjW ¼ CorrðZ;W Þ2. The choice of f is to set

X ¼ μ−1ðW Þ where μðxÞ ¼ E½ZjX ¼ x�:

The inverse biochemical “response” function, μ−1, is expected
to be smooth (continuously differentiable) for biophysically rea-
sonable response functions μðxÞ. When f is set equal to μ−1 in
Eq. S30,

E½ZjW ¼ w� ¼ E½ZjX ¼ μ−1ðwÞ� ¼ μðμ−1ðwÞÞ ¼ w;

or more concisely E½ZjW � ¼ E½ZjX � ¼ W , which is the linearity
in W we set out to achieve.

It now follows, recalling Eq. S32, that Corr½Z; W �2 ¼ ιZjX
for any distribution pðW Þ and the implied input distribution
pðXÞ. Let ~W denote the artificial input when that random
variable has a Gaussian distribution. Then, Ið ~W ;ZÞ ≥ 1

2
ln½1−

Corr½Z; ~W �2�−1 (8). We have now shown that

C ≥ Ið ~X ;ZÞ ¼ Ið ~W ;ZÞ ≥ 1

2
ln½1 − Corr½Z; ~W �2�−1

¼ 1

2
ln½1 − ιZj ~X �−1;

where ~X ¼ μ−1ð ~W Þ has the distribution implied by the Gaussian
distribution of ~W .

In biology, because natural input distributions have not been
widely measured, the set S of possible input distributions pðXÞ
must be specified by the investigator, and a range of choices for S
may be entertained. To implement the capacity bound in Eq. S29,
one can range over choices for the mean and variance of the

Gaussian ~W , excluding those choices that imply a distribution
pðXÞ that one wants to omit from S. Armed with the function
σ2ðXÞ ¼ V ½ZjX �, both pð ~XÞ and the informational fraction
ιZj ~X can be computed by Monte Carlo sampling from pð ~W Þ, using
the relation ~X ¼ μ−1ð ~W Þ. To implement the capacity bound, the
other input distributions in S need not be specified. Finally, the
informational fraction ιZj ~X should be maximized over the set of
distributions pð ~XÞ given by the allowed means and variances
for ~W .

As a simple illustration, consider the Gaussian noise channel
of information theory given by Z ¼ gX þ ηZjX , where g is a
constant and ηZjX is normally distributed with zero mean and
a constant variance σ2

ZjX that is not dependent on X . Let S con-
sist of input distributions satisfyingE½X � ¼ 0 and V ½X � ≤ σ2. Be-
cause W ¼ gX here, we set E½ ~W � ¼ 0 and V ½ ~W � ≤ g2σ2. The
informational fraction ιZj ~X ¼ g2V ½ ~X �∕ðg2V ½ ~X � þ σ2

ZjX Þ, which

is maximized by setting V ½ ~X � ¼ σ2, which implies V ½ ~W � ¼ g2σ2.
The corresponding, maximized lower bound for the capacity
given by Eq. S29 is then equal to 1

2
ln½1 − ιZj ~X �−1 ¼

1
2
ln½1þ ðg2σ2∕σ2

ZjX Þ�, which is exactly equal to the capacity of the
Gaussian noise channel with input “power” constraint σ2. Our
lower bound on the information capacity is a tight one for the
Gaussian channel.

Information Transfer When ιZjX Is Large. Consider now a setting in
which the biochemical mechanism and the input distribution can
vary as n → ∞, where n labels the sequence of mechanisms and
input distributions. Suppose that ιZnjXn

, the informational fraction
for Zn, converges to its maximum value of 1 and that the uncondi-
tional distribution pðznÞ of the rescaled output of the signaling me-
chanism does not become ever less uncertain as n → ∞. By
uncertainty in the continuous case (or differential entropy), we
mean the logarithm of the effective volume of the smallest set that
contains most of the probability (9). We will give a concrete bio-
chemical example of such asymptotic behavior below.

More precisely, suppose ιZnjXn
→ 1 and that hðznÞ↛ −∞ (or,

equivalently, hðznÞ is bounded below by a constant for all n),
where zn ¼ Zn∕V ½Zn�12 as before. Then, Eq. S27 implies that
−hðznjXnÞ → þ∞ and hence

IðXn;ZnÞ ¼ IðXn; znÞ → ∞ as ιZn jXn
→ 1. [S33]

Biophysically reasonable transduction mechanisms are expected
to give rise to unconditional distributions for the rescaled output,
pðznÞ, that reflect the uncertainty of the input rather than having
differential entropy that is unbounded below. If the input distri-
bution varies as the limit is taken, we assume its uncertainty (dif-
ferential entropy) does not become ever less as n → ∞.

As an example of such asymptotics, suppose we hold the input
distribution constant for simplicity and consider the linear noise
approximation (LNA) of output at time t, for which (10)

Zt;n ¼ Ωnϕðt; XÞ þ Ω1∕2
n ξðt; XÞ; [S34]

where Ωn is the system size, ϕðt; XÞ is the deterministic solution
for output concentration at time t, and the random variable
ξðt; XÞ can be shown in the case of the LNA not to depend
on Ωn (11). Notice that Eq. S34 makes no assumption of Gaus-
sianity. Let ~Zt;n ≔ Zt;n∕Ωn denote the output concentration. We
can see that, as the system size Ωn → ∞, then ιZt;njX → 1 because

EfV ½ ~Zt;njX �g
VfE½ ~Zt;njX �g ¼ EfV ½ξðt; XÞjX �g

ΩnV ½ϕðt; XÞ� þ Ω1∕2
n Covfϕðt; XÞ; E½ξðt; XÞjX �g þ VfE½ξðt; XÞjX �g

¼ OðΩ−1
n Þ:
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Furthermore, it follows from Eq. S34 that ~Zt;n → ϕðt; XÞ: The
output concentration converges (almost surely) to the determinis-
tic solution, which is a function ofX . Let ~zt;n ¼ ~Zt;nV ½ ~Zt;n�−1∕2 be
the rescaled output with a variance of 1. The differential entropy
of the rescaled output hð~zt;nÞ → hðϕðt; XÞÞ − 1

2
lnVfϕðt; XÞg, un-

der suitable regularity conditions. We make the mild assumption
that the distribution of the continuous input is such that
jhðϕðt; XÞÞj < ∞ and Vfϕðt; XÞg < ∞. It then follows from
Eq. S27 and the above argument that IðX ;Zt;nÞ ¼ IðX ; ~zt;nÞ →
∞ as Ωn → ∞. Information transfer becomes perfect in the limit
of large system size. Because the LNA tells us about moments
but not distributions, it is not clear how to prove this property
without making use of the informational fraction and the implied
properties when the informational fraction tends to its maximal
value of 1.

Determining the Informational Fraction for Osmosensing in
Budding Yeast
Pelet et al. (12) used YFP to report gene expression from the
STL1 promoter for six different concentrations of extracellular
salt. They recorded fluorescence levels from approximately
1,000 cells for each concentration of salt.

Letting Pi denoting the probability of the environment having
a salt concentration equal to Si, then the informational fraction
for a given probability distribution of extracellular salt is

informational fraction ¼ VfE½ZjS�g
V ½Z�

¼
∑
i

PiE½ZjSi�2 − ð∑
i

PiE½ZjSi�Þ2

∑
i

PiE½Z2jSi� − ð∑
i

PiE½ZjSi�Þ2
;

[S35]

where we have used V ½W � ¼ E½W 2� − E½W �2. Therefore, if yi;j
is the average fluorescence level of YFP in the jth cell (the
total fluorescence in that cell divided by the area of the cell)
when the salt concentration is Si and there are Ni such cells,
then our empirical measure of the informational fraction is
given by

∑
i

Pi

�
1
Ni ∑

Ni

j¼1
yi;j

�
2

−
�
∑
i

Pi
1
Ni ∑

Ni

j¼1
yi;j

�
2

∑
i

Pi
1
Ni ∑

Ni

j¼1
y2i;j −

�
∑
i

Pi
1
Ni ∑

Ni

j¼1
yi;j

�
2

: [S36]

We exhaustively searched the possible probability distributions
over the six different concentrations of extracellular salt and de-
termined the probability distributions that have high informa-
tional fractions. We discretized Pi (to have 21 equally spaced
values, between and including the values zero and one) and
looped through all possible values of Pi for each i, calculating
the informational fraction only when ∑iPi ¼ 1.

For two reporters that are conjugate given the history of the
stochastic variables extrinsic to gene expression, then the total
extrinsic fraction for a particular concentration of salt is defined
as the ratio of the covariance of the two reporters to the variance
of the output Z:

total extrinsic fraction

¼ Cov½Z; Z 0jSi�
V ½Z�

¼
∑
i

PiE½ZZ 0jSi� − ð∑
i

PiE½ZjSi�Þð∑
i

PiE½Z 0jSi�Þ

∑
i

PiE½Z2jSi� − ð∑
i

PiE½ZjSi�Þ2
[S37]

for the experiments of Pelet et al. If ci;j is the average fluorescence
measured from the CFP reporter in the jth cell when the concen-
tration of salt is Si, then our empirical measure of the total ex-
trinsic fraction is given by

∑
i

Pi
1
Ni ∑

Ni

j¼1
yi;jci;j −

�
∑
i

Pi
1
Ni ∑

Ni

j¼1
yi;j

��
∑
i

Pi
1
Ni ∑

Ni

j¼1
ci;j

�

∑
i

Pi
1
Ni ∑

Ni

j¼1
y2i;j −

�
∑
i

Pi
1
Ni ∑

Ni

j¼1
yi;j

�
2

:

[S38]

The two fluorescent proteins, CFP and YFP, have different
brightness, and we multiply each ci;j by a correction factor so that
the median of the YFP measurements is equal to the median of
the CFP measurements for each concentration of salt.

Both the CFP and YFP measurements should also be cor-
rected for cellular autofluorescence, although autofluorescence
is less of a problem for YFP because it is brighter. We were
unable to correct the data for autofluorescence, and numerical
values should be interpreted with this caveat.

Calculation of the Variance Components from the Chemical
Master Equation
The conjugate reporter method allows us to find analytical ex-
pressions for the components of the variance. Consider gene ex-
pression with one extrinsic variable (Fig. S2A). In a mathematical
model, this extrinsic variable corresponds to a fluctuating propen-
sity for a particular reaction (2, 13), and we will begin with a fluc-
tuating propensity for transcription. If this propensity has three
states reflecting, for example, three states of the extracellular en-
vironment (Fig. S2B), then we can define κ01 to be the probability
per unit time of transitioning from the state 0 to state 1 (condi-
tional on being in state 0); κ10 to be the probability per unit time
of transitioning back; κ12 to be the probability per unit time of
transitioning from state 1 to state 2; and κ21 to be the probability
per unit time of transitioning back. With all the κij identical, we
used this model to generate the data for Fig. 2B.

Initially, we will consider the decomposition of the variance
into intrinsic and extrinsic components,

V ½ZðtÞ� ¼ EfV ½ZðtÞjvH0;t�g þ VfE½ZðtÞjvH0;t�g; [S39]

and therefore require reporters that are conditionally indepen-
dent given the history of v0, the propensity for the transcriptional
reaction, and that have the same means conditional on vH0;t.
An identical copy of the system exposed to the same fluctuations
in v0 satisfies both these conditions (Fig. S2A). We will denote the
number of mRNAs from each copy of the system as m1 and m2

and the number of proteins from each copy as n1 and n2.
The probability of having m1 mRNAs and n1 proteins from
the first copy and m2 mRNAs and n2 proteins from the second
is Pðm1; n1; m2; n2; v

ðiÞ
0 ; tÞ, with i denoting the state of the extrin-

sic variable. For brevity, we will write P ðiÞ for Pðm1; n1; m2;
n2; v

ðiÞ
0 ; tÞ and only explicitly write (with subscripts) the number

of molecules when these differ from either m1, n1, m2, or n2.
The corresponding master equations for the dual reporter sys-
tems are then (see Fig. S2A for definitions of the parameters)
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∂P ðiÞ

∂t
¼ vðiÞ0 ½P ðiÞ

m1−1 − P ðiÞ� þ d0½ðm1 þ 1ÞP ðiÞ
m1þ1 −m1P ðiÞ�

þ d1½ðn1 þ 1ÞP ðiÞ
n1þ1 − n1P ðiÞ� þ v1m1½P ðiÞ

n1−1 − P ðiÞ�
þ vðiÞ0 ½P ðiÞ

m2−1 − P ðiÞ� þ d0½ðm2 þ 1ÞP ðiÞ
m2þ1 −m2P ðiÞ�

þ d1½ðn2 þ 1ÞP ðiÞ
n2þ1 − n2P ðiÞ� þ v1m2½P ðiÞ

n2−1 − P ðiÞ�

þ
� κ10P ð1Þ − κ01P ð0Þ if i ¼ 0

κ01P ð0Þ − ðκ10 þ κ12ÞP ð1Þ þ κ21P ð2Þ if i ¼ 1

κ12P ð1Þ − κ21P ð2Þ if i ¼ 2

;

[S40]

where there is one equation for each state of the extrinsic variable
(here, vðiÞ0 ).

We can solve Eq. S40 exactly for the moments of the probabil-
ity distribution P ðiÞ. We will use s to represent the vector of num-
bers of species, s ¼ ½m1; n1; m2; n2�, and, for brevity, we will use
angled brackets to denote expectations:

hf ðsÞii ¼ ∑
s

Pðs; vðiÞ0 Þf ðsÞ ¼ ∑
s

P ðiÞf ðsÞ [S41]

for any function f ðsÞ and where the expectation is taken with
the particular value of v0 fixed. By multiplying Eq. S40 by either
m1 or m2 and summing over all states described by P ðiÞ (over all
values of m1, m2, n1, and n2), we find that the mean mRNA for
either copy then obeys

∂hmii
∂t

¼ vðiÞ0 ∑
s

P ðiÞ − d0hmii

þ
� κ10hmi1 − κ01hmi0 if i ¼ 0

κ01hmi0 − ðκ10 þ κ12Þhmi1 þ κ21hmi2 if i ¼ 1

κ12hmi1 − κ21hmi2 if i ¼ 2

;

[S42]

where the sum over P ðiÞ is over all states of the system for a given
v0. Performing this summation in Eq. S40 gives

∂
∂t∑

s

P ð0Þ ¼ κ10∑
s

P ð1Þ − κ01∑
s

P ð0Þ;

∂
∂t∑

s

P ð1Þ ¼ κ01∑
s

P ð0Þ − ðκ10 þ κ12Þ∑
s

P ð1Þ þ κ21∑
s

P ð2Þ;

∂
∂t∑

s

P ð2Þ ¼ κ12∑
s

P ð1Þ − κ21∑
s

P ð2Þ; [S43]

and so

∑
s

P ð0Þ ¼ κ10κ21
κ10κ21 þ κ01κ12 þ κ01κ21

;

∑
s

P ð1Þ ¼ κ01κ21
κ10κ21 þ κ01κ12 þ κ01κ21

;

∑
s

P ð2Þ ¼ κ01κ12
κ10κ21 þ κ01κ12 þ κ01κ21

[S44]

at steady state. The mean protein for either copy satisfies

∂hnii
∂t

¼ v1hmii − d1hnii

þ
� κ10hni1 − κ01hni0 if i ¼ 0

κ01hni0 − ðκ10 þ κ12Þhni1 þ κ21hni2 if i ¼ 1

κ12hni1 − κ21hni2 if i ¼ 2

:

[S45]

The simultaneous equations, Eq. S42 and Eq. S45 together with
Eq. S42, can be solved at steady state, straightforwardly with
computer algebra packages such as Mathematica (Wolfram
Research).

Similarly, by multiplying Eq. S40 by, for example,m2
1 and aver-

aging, we can find equations for the second moments:

∂hm2ii
∂t

¼ 2vðiÞ0 hmii þ vðiÞ0 ∑
s

P ðiÞ þ d0hmii − 2d0hm2ii

þ
� κ10hm2i1 − κ01hm2i0 if i ¼ 0

κ01hm2i0 − ðκ10 þ κ12Þhm2i1 þ κ21hm2i2 if i ¼ 1

κ12hm2i1 − κ21hm2i2 if i ¼ 2

[S46]

for the mean square number of molecules of mRNA;

∂hn2ii
∂t

¼ d1hnii þ 2v1hmnii þ v1hmii − 2d1hn2ii

þ
� κ10hn2i1 − κ01hn2i0 if i ¼ 0

κ01hn2i0 − ðκ10 þ κ12Þhn2i1 þ κ21hn2i2 if i ¼ 1

κ12hn2i1 − κ21hn2i2 if i ¼ 2

[S47]

for the mean square number of molecules of protein; and

∂hmnii
∂t

¼ vðiÞ0 hnii þ v1hm2ii − ðd0 þ d1Þhmnii

þ
� κ10hmni1 − κ01hmni0 if i ¼ 0

κ01hmni0 − ðκ10 þ κ12Þhmni1 þ κ21hmni2 if i ¼ 1

κ12hmni1 − κ21hmni2 if i ¼ 2

[S48]

for the mean product of mRNA and protein numbers. We solve
Eqs. S46, S47, and S48 at steady state simultaneously using the
solutions of Eqs. S42 and S45 and so compute the stationary sec-
ond moments.

Finally, we need the covariance between the two reporters,
hn1n2i, to determine the extrinsic variance. From Eq. S40, we find
three sets of coupled equations:

∂hn1n2ii
∂t

¼ 2v1hm1n2ii − 2d1hn1n2ii þ
� κ10hn1n2i1 − κ01hn1n2i0 if i ¼ 0

κ01hn1n2i0 − ðκ10 þ κ12Þhn1n2i1 þ κ21hn1n2i2 if i ¼ 1

κ12hn1n2i1 − κ21hn1n2i2 if i ¼ 2

[S49]
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to determine the covariance between the proteins;

∂hm1n2ii
∂t

¼ vðiÞ0 hnii þ v1hm1m2ii − ðd0 þ d1Þhm1n2ii þ
� κ10hm1n2i1 − κ01hm1n2i0 if i ¼ 0

κ01hm1n2i0 − ðκ10 þ κ12Þhm1n2i1 þ κ21hm1n2i2 if i ¼ 1

κ12hm1n2i1 − κ21hm1n2i2 if i ¼ 2

[S50]

to determine the covariance of the mRNA of one copy of the system with the protein of another (hm1n2i ¼ hm2n1i from symmetry);
and

∂hm1m2ii
∂t

¼ 2vðiÞ0 hmii − 2d0hm1m2ii þ
� κ10hm1m2i1 − κ01hm1m2i0 if i ¼ 0

κ01hm1m2i0 − ðκ10 þ κ12Þhm1m2i1 þ κ21hm1m2i2 if i ¼ 1

κ12hm1m2i1 − κ21hm1m2i2 if i ¼ 2

[S51]

to determine the covariance of the mRNAs from the two copies
of the systems. We solve Eqs. S49, S50, and S51 at steady state. To
find the final moments, we sum the moments calculated for each
state of the extrinsic variable because

hf ðsÞi ¼ ∑
s;i

Pðs; vðiÞ0 Þf ðsÞ ¼ ∑
s;i

P ðiÞf ðsÞ ¼ ∑
i

hf ðsÞii [S52]

for any function f ðsÞ.
All these equations can be straightforwardly modified to study

extrinsic fluctuations in a different kinetic rate. For example, if
the translation rate fluctuates then we replace vðiÞ0 by v0 and
the translation rate v1 by the appropriate v

ðiÞ
1 in all the equations.

To have two or more rates fluctuating (2), we can either extend
the number of states of P ðiÞ if the extrinsic fluctuations are un-
correlated or have more than one parameter changing with state i
if the extrinsic fluctuations are correlated. Our analytical results
verify the behavior found previously through simulation for par-
ticular values of parameters (2).

Extrinsic Fluctuations in Transcription Need Not Change the Form of
the Intrinsic Noise. Consider extrinsic fluctuations in v0, so that
v0 has three states: vðiÞ0 , where i runs from 0 to 2. From Eq. S44,

hv0i ¼
κ10κ21v

ð0Þ
0 þ κ01κ21v

ð1Þ
0 þ κ01κ12v

ð2Þ
0

κ01κ12 þ κ01κ21 þ κ10κ21
; [S53]

and we find that

hmi ¼ hv0i
d0

; hni ¼ υ1
d1

hmi: [S54]

To compare with previous work (14–19), we will give our results in
terms of the coefficient of variation, η (the standard deviation of a
variable divided by its mean). For the intrinsic noise, we have that

η2int ¼
1

hni þ
d1

d0 þ d1

1

hmi ; [S55]

which has the same form for the system when no extrinsic fluc-
tuations are present (16, 19) (Fig. S3). If we assume that
vð0Þ0 ¼ v0ð1 − ϵÞ, vð1Þ0 ¼ v0, and vð2Þ0 ¼ v0ð1þ ϵÞ for a constant
v0 and ϵ and that κ01 ¼ κ10 ¼ κ12 ¼ κ21 ¼ κ, then the extrinsic
noise equals

η2ext ¼
d0d1ðd0 þ d1 þ κÞ

ðd0 þ d1Þðd0 þ κÞðd1 þ κÞ η
2
v0 [S56]

and is proportional to the square of the noise in v0, η2v0 , as ex-
pected (20). We note that η2v0 ¼ 2ϵ2

3
with this choice of vðiÞ0 .

Extrinsic Fluctuations in Translation Can Increase the Intrinsic Noise.
We can proceed similarly with extrinsic fluctuations in the

translation rate. If we let vð0Þ1 ¼ v1ð1 − ϵÞ, vð1Þ1 ¼ v1, and vð2Þ1 ¼
v1ð1þ ϵÞ and κ01 ¼ κ10 ¼ κ12 ¼ κ21 ¼ κ, then

hmi ¼ υ0
d0

; hni ¼ υ1
d1

hmi [S57]

and

η2int ¼
1

hni þ
d1

d0 þ d1

1

hmi
�
1þ d0 þ d1

d0 þ d1 þ κ
η2v1

�
[S58]

with

η2ext ¼
d1

d1 þ κ
η2v1 : [S59]

We see that the intrinsic noise is larger than the intrinsic noise of
an equivalent system with no extrinsic fluctuations (ηv1 ¼ 0 and
Eq. S55) because of the factor in square brackets in Eq. S58
(Fig. S3). This factor depends on both the magnitude and lifetime
of the fluctuations in v1, as well as the lifetime of both mRNA and
protein molecules.

Extrinsic Fluctuations in the Degradation of mRNA Can Increase the
Intrinsic Noise. Having extrinsic fluctuations in the degradation
rates of either mRNA or protein gives more complex behaviors
because such fluctuations directly affect the lifetime of fluctua-
tions in proteins (2). Assuming, as before, that dð0Þ

0 ¼ d0ð1 − ϵÞ,
dð1Þ
0 ¼ d0, and dð2Þ

0 ¼ d0ð1þ ϵÞ, that κ01 ¼ κ10 ¼ κ12 ¼ κ21 ¼ κ,
and that η2d0 < 1, then

hmi ¼ v0
d0

�
1þ d0

d0 þ κ
η2d0 þ⋯

�
; hni ¼ υ1

d1
hmi; [S60]

where we have omitted terms of order η4d0 and higher. The intrin-
sic noise is approximately

η2int ≃
1

hni

þ d1
d0 þ d1

1

hmi
�
1þ d2

0 ð2d0 þ d1 þ κÞ
ðd0 þ d1Þðd0 þ κÞðd0 þ d1 þ κÞ η

2
d0

�
;

[S61]

and the extrinsic noise is approximately

η2ext ≃
d0d1ðd0 þ d1 þ κÞ

ðd0 þ d1Þðd0 þ κÞðd1 þ κÞ η
2
d0
; [S62]

where higher order corrections in ηd0 have been omitted. The in-
trinsic noise is therefore larger than the intrinsic noise of an
equivalent system with no extrinsic fluctuations (ηd0 ¼ 0) provid-
ing ηd0 is sufficiently small (Fig. S3), and the mean number of
proteins has increased above the value predicted by purely deter-
ministic dynamics.
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Extrinsic Fluctuations in the Degradation of Protein Can Decrease the
Intrinsic Noise. Assuming again that dð0Þ

1 ¼ d1ð1 − ϵÞ, dð1Þ
1 ¼ d1,

and dð2Þ
1 ¼ d1ð1þ ϵÞ, that κ01 ¼ κ10 ¼ κ12 ¼ κ21 ¼ κ, and that

η2d1 < 1, then

hmi ¼ υ0
d0

; hni ≃ v1
d1

hmi
�
1þ d1

d1 þ κ
η2d1

�
; [S63]

where we ignore terms of order η4d1 and higher. The intrinsic noise
is

η2int ≃
1

hni þ
d1

d0 þ d1

1

hmi

×
�
1 −

d2
1 ð2d0ðd0 þ d1Þ − ðd1 þ κÞð2d1 þ κÞÞ

ðd0 þ d1Þðd1 þ κÞðd0 þ d1 þ κÞð2d1 þ κÞ η
2
d1

�
; [S64]

and

η2ext ≃
d1

d1 þ κ
η2d1 ; [S65]

where we have omitted higher order terms in ηd1 . We expect d0 >
d1 (19) and κ ≥ d1 (21). The intrinsic noise is therefore typically
smaller than the intrinsic noise of an equivalent system with no
extrinsic fluctuations (Fig. S3), and the mean number of proteins
has increased above the value predicted by deterministic dy-
namics.

Decomposing the Intrinsic Noise. In Eq. 3 of the main paper, we
decompose the intrinsic noise into transcriptional and transla-
tional components. We further argue that a bicistronic reporter
correctly measures the translational component and when com-
bined with the original reporter for the system will allow all three
components of the variance to be measured. We apply these ideas
to calculate the transcriptional and translational components of
the intrinsic noise when there are extrinsic fluctuations in the pro-
pensity for transcription. The master equation for a bicistronic
reporter (Fig. S2C) is

∂P ðiÞ

∂t
¼ vðiÞ0 ½P ðiÞ

m−1 − P ðiÞ� þ d0½ðmþ 1ÞP ðiÞ
mþ1 −mP ðiÞ�

þ d1½ðn1 þ 1ÞP ðiÞ
n1þ1 − n1P ðiÞ� þ v1m½Pn1−1 − P ðiÞ�

þ d1½ðn2 þ 1ÞP ðiÞ
n2þ1 − n2P ðiÞ� þ v1m½Pn2−1 − P ðiÞ�

þ
� κ10P ð1Þ − κ01P ð0Þ if i ¼ 0

κ01P ð0Þ − ðκ10 þ κ12ÞP ð1Þ þ κ21P ð2Þ if i ¼ 1

κ12P ð1Þ − κ21P ð2Þ if i ¼ 2

;

[S66]

wherem is the number of molecules of the mRNA and we assume
three different states of the extrinsic variable (here v0). We can
solve Eq. S66 for its moments following the approach used for
Eq. S40. The equations undergo only minor changes with some
straightforward replacements (for example, hmðiÞ

1 mðiÞ
2 i becomes

h½mðiÞ�2i). We find that the transcriptional and translational com-
ponents of the intrinsic noise are

η2transc ¼
d1

d0 þ d1

1

hmi ; η2transl ¼
1

hni ; [S67]

showing that our theoretical definitions (Eq. 3) give a natural de-
composition.

Eq. S67 implies that transcriptional variation is often greater
than translational variation. Typical lifetimes of mRNA in Escher-
ichia coli are several minutes, but protein numbers are often
mostly reduced through dilution. Assuming a cell cycle of
50 min (22) and an average lifetime of an mRNA of 3 min (23),
then d1∕ðd0 þ d1Þ is approximately 0.06, and so η2transc∕η2transl ≃
0.06 hni

hmi. Consequently, transcriptional variation is greater than
translational variation if hni is approximately greater than
18 times hmi, which is not uncommon: The average number of
proteins per mRNA is around 540 (24).

Verifying Conditional Independences
To use conjugate reporters to determine the components of the
variance of a given model, we must check that the appropriate
conditional independences are satisfied. Suppose we wish to ver-
ify that two reporters Z and Z 0 are conditionally independent
given the history YH. Suppose further that the future dynamics
of these Y variables can depend on their own histories, but (given
those histories) are independent of the history of all other vari-
ables in the model. Then, informally, Z and Z 0 are conditionally
independent givenYH if we can first simulate the realization of Y
(to time t), and then simulate two subsystems independently (or
“separately”) given that history of Y to obtain Zt and Z 0

t .
One of us (C.G.B.) has developed the necessary mathematical

theory for verification of conditional independence properties in
stochastic kinetic models (chemical master equations) in general
(25, 26). An algorithm, MIDIA, that applies this theory to test
conditional independences has been implemented in R and is
freely available (27).
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Fig. S1. Typical plot of single-cell measurements of a reporter versus measurements of its conjugate reporter. These data are simulated and are given in
numbers of proteins per cell. A typical measurement is highlighted by a red circle, and d⊥ and d∥ are shown for this measurement. The diagonal Z ¼ Z 0

is shown by dashes. The mean ðE½Z�; E½Z�Þ lies on this diagonal and is shown as a black dot. The point of intersection with the diagonal of the line from
ðZ; Z 0Þ perpendicular to the diagonal is shown as a red dot. This line has a gradient of −1, and the point of intersection is ððZ þ Z 0Þ∕2; ðZ þ Z 0Þ∕2Þ.

Fig. S2. Reactions for models of gene expression. (A) Conjugate reporters given the history of all stochastic processes extrinsic to gene expression. Here, v0 is
the probability of transcription per unit time; v1 is the probability of translation per unit time per molecule; d0 is the degradation rate of mRNA per unit time
per molecule; and d1 is the degradation rate of protein per unit time per molecule. (B) The local environment is modeled as a Markov chain. It transitions
between three states generating extrinsic fluctuations in a parameter that correspondingly transitions between three values. (C) A bicistronic reporter for
measuring the translational component of variation in gene expression. The inset shows the correspondence between the notation here and that in the main
text. We simulated this model (with all κij identical and equal to κ) to generate the data for Fig. 2B.
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Fig. S3. The dependence of intrinsic noise on extrinsic fluctuations. Exact analytical calculations for intrinsic noise for the model of Fig. S2A as the strength of
the extrinsic fluctuations in one rate parameter varies. Here, ϵ parametrizes the difference between the extrinsic parameters in each environmental state, and
the noise in the extrinsic parameter is 2ϵ2

3 . Each curve is marked with the biochemical process that is affected by extrinsic fluctuations. With no extrinsic fluctua-
tions, the intrinsic noise is 0.17 (and equal to the intrinsic noise when only the transcription rate fluctuates). Parameters are the same as those used for the
simulations of Fig. 2B. For large ηd0

(a fluctuating rate of mRNA degradation), the approximation used in Eq. S61 breaks down, and the intrinsic noise decreases
below the value it takes when ηd0

¼ 0. This nonmonotonic behavior arises because the mean number of proteins increases dramatically as ϵ → 1.

Bowsher and Swain www.pnas.org/cgi/doi/10.1073/pnas.1119407109 10 of 11

http://www.pnas.org/cgi/doi/10.1073/pnas.1119407109


Table S1. Reaction network and parameter
values used in simulations for Fig. 2B

variable eta = 0.5
# Z′ reporter

DA + S2 →S2 + DA + MA; v02 = 0.01
DA + S1 → S1 + DA + MA ; v01= v02*(1−eta)
DA + S3 → S3 + DA + MA ; v03 = v02*(1+eta)

MA → MA + A ; v1 = 0.2
MA → null; d0 = 0.0167
A → null; d1 = 0.0017

# Z reporter
# transcription

DB + S2 → S2 + DB + MB; v02
DB + S1 → S1 + DB + MB; v01
DB + S3 → S3 + DB + MB; v03

# translation
MB → MB + B; v1
# degradation
MB → null; d0
B → null; d1

# Z” (bicistronic) reporter
MB → MB + C; v1
C → null; d1

# state for fluctuations in v0
S1 → S2; k12 = d1/30
S2 → S1; k21 = k12
S2 → S3; k23 = k12
S3 → S2; k32 = k12

INIT
DA = 1 N;
DB = 1 N;
S2 = 1 N;
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