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Analyticity, Convergence, and Convergence Rate
of Recursive Maximum-Likelihood Estimation

in Hidden Markov Models
Vladislav B. Tadić

Abstract—This paper considers the asymptotic properties of
the recursive maximum-likelihood estimator for hidden Markov
models. The paper is focused on the analytic properties of the
asymptotic log-likelihood and on the point-convergence and con-
vergence rate of the recursive maximum-likelihood estimator.
Using the principle of analytic continuation, the analyticity of the
asymptotic log-likelihood is shown for analytically parameterized
hidden Markov models. Relying on this fact and some results
from differential geometry (Lojasiewicz inequality), the almost
sure point convergence of the recursive maximum-likelihood
algorithm is demonstrated, and relatively tight bounds on the
convergence rate are derived. As opposed to the existing result
on the asymptotic behavior of maximum-likelihood estimation
in hidden Markov models, the results of this paper are obtained
without assuming that the log-likelihood function has an isolated
maximum at which the Hessian is strictly negative definite.

Index Terms—Analyticity, convergence rate, hidden Markov
models, Lojasiewicz inequality, maximum-likelihood estimation,
point convergence, recursive identification.

I. INTRODUCTION

H IDDEN Markov models are a broad class of stochastic
processes capable of modeling complex correlated data

and large-scale dynamical systems. These processes consist of
two components: states and observations. The states are unob-
servable and form a Markov chain. The observations are inde-
pendent conditionally on the states and provide only available
information about the state dynamics. Hidden Markov models
have been formulated in the seminal paper [1], and over the last
few decades, they have found a wide range of applications in di-
verse areas such as acoustics and signal processing, image anal-
ysis and computer vision, automatic control and robotics, eco-
nomics and finance, computational biology, and bioinformatics.
Due to their practical relevance, these models have extensively
been studied in a large number of papers and books (see, e.g.,
[8], [13], and references cited therein).

Besides the estimation of states given available observations
(also known as filtering), the identification of model parameters
is probably the most important problem associated with hidden
Markov models. This problem can be described as the estima-
tion (or approximation) of the state transition probabilities and
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the observation likelihoods given available observations. The
identification of hidden Markov models has been considered in
numerous papers and several methods and algorithms have been
developed (see [8, Part II], [13], and references cited therein).
Among them, the methods based on the maximum-likelihood
principle are probably the most important. Their various asymp-
totic properties (asymptotic consistency, asymptotic normality,
convergence rate) have been analyzed in a number of papers (see
[1], [5], [6], [11], [12], [19], [22]–[25], [27], [31], [36], [37]; see
also [8, ch. 12], [13], and references cited therein). Although the
existing results provide an excellent insight into the asymptotic
behavior of maximum-likelihood estimators for hidden Markov
models, they all crucially rely on the assumption that the log-
likelihood function has a strong maximum, i.e., an isolated max-
imum at which the Hessian is strictly negative definite. As the
log-likelihood function admits no closed-form expression and is
fairly complex even for small-size hidden Markov models (four
or more states), it is hard (if not impossible) to show the exis-
tence of an isolated maximum, let alone checking the definite-
ness of the Hessian.

The differentiability, analyticity, and other analytic properties
of functionals of hidden Markov models similar to the asymp-
totic log-likelihood (mainly entropy rate) have recently been
studied in [15]–[17], [32], [33], and [38]. Although very in-
sightful and useful, the results presented in these papers cover
only models with discrete state and observation spaces and do
not consider the asymptotic behavior of the maximum-likeli-
hood estimation method.

In this paper, we study the asymptotic behavior of the recur-
sive maximum-likelihood estimator for hidden Markov models
with a discrete state-space and continuous observations. We es-
tablish a link between the analyticity of the asymptotic log-like-
lihood on the one hand, and the point convergence and con-
vergence rate of the recursive maximum-likelihood algorithm,
on the other hand. More specifically, relying on the principle
of analytic continuation, we show under mild conditions that
the asymptotic log-likelihood function is analytic in the model
parameters if the state transition probabilities and the obser-
vation conditional distributions are analytically parameterized.
Using this fact and some results from differential geometry (Lo-
jasiewicz inequality), we demonstrate that the recursive max-
imum-likelihood algorithm for hidden Markov models is al-
most surely point convergent (i.e., it has a single accumula-
tion point w.p.1). We also derive tight bounds on the almost
sure convergence rate. As opposed to all existing results on
the asymptotic behavior of maximum-likelihood estimation in
hidden Markov models, the results of this paper are obtained
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without assuming that the log-likelihood function has an iso-
lated strong maximum.

The paper is organized as follows. In Section II, hidden
Markov models and the corresponding recursive max-
imum-likelihood algorithms are defined. The main results
are also presented in Section II. Section III provides several
practically relevant examples of the main results. Section IV
contains the proofs of the main results, while the results of
Section III are proved in Section V.

II. MAIN RESULTS

In order to state the problems of recursive identification and
maximum-likelihood estimation in hidden Markov models with
finite state-spaces and continuous observations, we use the fol-
lowing notation. is an integer, while .

is also an integer, while is a Borel-measurable set
in . are nonnegative real numbers such
that for each . are
probability measures on . is an -valued
stochastic process which is defined on a (canonical) probability
space and satisfies

w.p.1 for all and any Borel measurable set in
. On the other side, is a positive integer, while is an open

set in . are Borel-measurable functions
of such that and
for all . are Borel-measur-
able functions of such that and

for all . For ,
is an -valued stochastic process which

is defined on a (canonical) probability space and ad-
mits

w.p.1 for each and any Borel-measurable set
in . Finally, stands for the asymptotic log-likelihood

associated with data . It is defined by

for , where

for .
In the statistics and engineering literature,

[as well as ] is commonly referred to as a
hidden Markov model with a finite state-space and continuous
observations, while and are considered as the (unobserv-
able) state and the (observable) output at discrete-time . On
the other hand, the identification of is regarded

to as the estimation (or approximation) of
and given the output sequence .
If the identification is based on the maximum-likelihood
principle and the parameterized model ,

, the estimation reduces to the maxi-
mization of the asymptotic likelihood over . In that
context, is considered as a candidate model of

. For more details on hidden Markov models
and their identification, see [8, Part II] and references cited
therein.

Since the asymptotic mean of is rarely
available analytically, is usually maximized by a stochastic
gradient algorithm, which itself is a special case of stochastic
approximation (for details, see [2], [21], [35], and references
cited therein). To define such an algorithm, we introduce some
further notation. For let

while is an matrix whose entry is
(i.e., ). On the other side,

for , , ,
, let

where . With this notation, a stochastic
gradient algorithm for maximizing can be defined as

(1)

(2)

(3)

In this recursion, is a sequence of positive reals.
, and are random variables which

are defined on the probability space and are indepen-
dent of .

In the literature on hidden Markov models and system identi-
fication, recursion (1)–(3) is known as the recursive maximum-
likelihood algorithm, while subrecursions (2) and (3) are re-
ferred to as the optimal filter and the optimal filter derivatives,
respectively (see [8] for further details). Recursion (3) usually
includes a projection (or truncation) device which prevents esti-
mates from leaving (see [9] and [28] for further de-
tails). As the problems studied in the paper are already complex,
this aspect of algorithm (3) is not considered here. Instead, sim-
ilarly as in [2, Part II], [21], and [28], our results on the asymp-
totic behavior of algorithm (3) (Theorems 2 and 3) are expressed
in a local form.

Throughout the paper, unless stated otherwise, the following
notation is used. For an integer denotes the set of

-dimensional probability vectors (i.e.,
), while and are the sets of -dimensional

complex vectors and complex matrices (respectively).
is the Euclidean norm in or , while is the distance
induced by this norm. For a real number and a set
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is the (complex) -vicinity of induced by
distance , i.e.,

is the set of stationary points of , i.e.,

Sequence is defined by and

for .
Algorithm (3) is analyzed under the following assumptions.

Assumption 1:
, and . Moreover, there exists a real

number such that .

Assumption 2: is irreducible and aperiodic (i.e.,
geometrically ergodic).

Assumption 3: There exists a function mapping
into , and for any compact set

, there exists a real number such that

for all .

Assumption 4: For each and are
real-analytic functions of on entire . Moreover,

and have (complex-valued) analytic continu-
ations and (respectively) with the following
properties.

i) and map
into and (respectively).

ii) and for all
.

iii) For any compact set , there exist real numbers
and a Borel-measurable func-

tion such that and
are analytic in on for each

, and such that

(4)

for all .
Assumption 1 corresponds to the properties of step-size se-

quence and is commonly used in the asymptotic anal-
ysis of stochastic approximation algorithms. It holds if

for , where .
Assumptions 2 and 3 are related to the stability of the model

and its optimal filter. In this or similar form,
they are involved in the analysis of various aspects of optimal fil-
tering and parameter estimation in hidden Markov models (see,
e.g., [5], [6], [11], [12], [22]–[25], [27], [31], [36], [37], and
[39]; see also [8, Part II] and references cited therein).

Assumption 4 corresponds to the parametrization of candi-
date models . Basically, Assumption 4 requires
transition probabilities and conditional densities

to be analytic in . It also requires and
to be analytically continuable to a complex domain in

such a way that the (corresponding) continuation of the optimal
filter transfer function is analytic and uniformly
bounded in . Although these requirements are restrictive,
they still hold in many practically relevant cases and situations.
Several examples are provided in the next section.

The main purpose of Assumption 4 is to ensure that the op-
timal filter associated with the transfer function is ana-
lytically continuable to a complex domain (see Lemma 4). Since
the asymptotic log-likelihood can be represented as a limit
of this filter, Assumption 4 (together with the limit theorems for
complex-analytic functions) also ensures the analyticity of
(see Theorem 1 and its proof). On the other side, the asymptotic
behavior of algorithm (3) (point convergence and convergence
rate) crucially relies on this property of (see Theorems 2
and 3 and their proofs; see also the outline of the proofs pro-
vided in Section IV-A).

In order to state our main results, we rely on the following
notation. Event is defined as

With this notation, our main results on the properties of the
asymptotic likelihood and algorithm (3) can be stated as
follows.

Theorem 1 (Analyticity): Let Assumptions 2–4 hold. Then,
the following is true.

i) is analytic on entire .
ii) For each , there exist real numbers

such that

(5)

for all satisfying .

Theorem 2 (Convergence): Let Assumptions 1–4 hold. Then,
exists and satisfies w.p.1 on

event .

Theorem 3 (Convergence Rate): Let Assumptions 1–4 hold.
Then

(6)

(7)

(8)

w.p.1 on , where and

if
otherwise

(9)

(10)

(11)

Proofs of the Theorems 1–3 are provided in Section IV.
In the literature on deterministic and stochastic optimization,

the convergence of gradient search is usually characterized by
the convergence of sequences , and
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(see, e.g., [3], [4], [34], [35], and references cited
therein). Similarly, the convergence rate can be described by
the rates at which sequences , and

converge to the sets of their accumulation points. In
the case of algorithm (3), this kind of information is provided
by Theorems 2 and 3. Basically, Theorem 2 claims that recur-
sion (3) is point convergent w.p.1 (i.e., the set of accumulation
points of is almost surely a singleton), while Theorem
3 provides relatively tight bounds on the convergence rate in
the terms of Lojasiewicz exponent and the convergence
rate of step sizes (expressed through and ).
Theorem 1, on the other side, deals with the properties of the
asymptotic log-likelihood and is a crucial prerequisite for
Theorems 2 and 3. Apparently, the results of Theorems 2 and
3 are of local nature: they hold on the event where algorithm
(3) is stable (i.e., where is contained in a compact
subset of ). Stating asymptotic results in such a form is quite
common for stochastic recursive algorithms (see, e.g., [2], [21],
[28], and references cited therein).

Various asymptotic properties of maximum-likelihood esti-
mation in hidden Markov models have been analyzed thoroughly
in a number ofpapers [1], [5], [6], [11], [12], [22]–[25], [27], [31],
[36], [37]; (see also [8, ch. 12], [13], and references cited therein).
Although these results offer a deep insight into the asymptotic
behavior of this estimation method, they can hardly be applied
to complex hidden Markov models. The reason comes out of
the fact that all existing results on the point convergence and
convergence rate of stochastic gradient search (which includes
recursive maximum-likelihood estimation as a special case)
require the objective function to have an isolated maximum at
which the Hessian is strictly negative definite. Since , the ob-
jective function of recursion (3), is rather complex even when the
observation space is finite (i.e., ) and ,
the numbers of states and observations, are relatively small (three
and above), it is hard (if possible at all) to show the existence of
isolated maxima, let alone checking the definiteness of .
Exploiting the analyticity of and Lojasiewicz inequality,
Theorems 2 and 3 overcome these difficulties: they both neither
require the existence of an isolated maximum, nor impose any
restriction on the definiteness of the Hessian (notice that the
Hessian cannot be strictly definite at a nonisolated maximum or
minimum). In addition to this, the theorems cover a relatively
broadclassofhiddenMarkovmodels (seeSection III).To thebest
of our knowledge, asymptotic results with similar features do
not exist in the literature on hidden Markov models or stochastic
optimization.

The differentiability, analyticity, and other analytic properties
of the entropy rate of hidden Markov models, a functional sim-
ilar to the asymptotic likelihood, have been studied thoroughly
in several papers [15]–[17], [32], [33], [38]. The results pre-
sented therein cover only models with discrete state and obser-
vation spaces and do not pay any attention to maximum-like-
lihood estimation. Motivated by the problem of the point con-
vergence and the convergence rate of recursive maximum-like-
lihood estimators for hidden Markov models, we extend these
results in Theorem 1 to models with continuous observations
and their likelihood functions. The approach we use to demon-
strate the analyticity of the asymptotic likelihood is based on the

principle of analytic continuation and is similar to the method-
ology formulated in [15].

III. EXAMPLES

In this section, we consider several practically relevant exam-
ples of the results presented in Section II. Analyzing these exam-
ples, we also provide a direction how the assumptions adopted
in Section II can be verified in practice.

A. Finite Observation Space

Hidden Markov models with finite state and observation
spaces are studied in this section. For these models, we show
that the conclusions of Theorems 1–3 hold whenever the pa-
rameterization of candidate models is analytic.

Let be an integer, while . Then, the
following results hold.

Proposition 1: Assumptions 3 and 4 are true if the following
conditions are satisfied.

i) For each is analytic in
on entire .

ii) for all .

Corollary 1: Let Assumptions 1 and 2 and the conditions of
Proposition 1 hold. Then, the conclusions of Theorems 1–3 are
true.

The proof is provided in Section V.

Remark: The conditions of Proposition 1 correspond to the
way the candidate models are parameterized. They hold for the
natural,1 exponential,2 and trigonometric3 parameterizations.

1 The natural parameterization can be defined as follows:
� � �� � � �� � � � � � � and � �� � �� � � �
� �� � �� � � for �� � � � � � � � , while � is the set of vectors
�� � � �� � � � � � � � ��� �� satisfying

� � � � � for each � � � .
2In the case of the exponential parameterization, we have � �

�� � � �� � � � � � � , and

� �� � �� �
	
��� �

	
��� �

� �� � �� �
	
��� �

	
��� �

for �� � � � � � � � , while � � .
3 The trigonometric parameterization is defined as � �

�� � � �� � � � � � � and

� �� � �� � �
� �

� �� � �� � �
� �

� �� � �� � �
� � ��� �

� �� � �� � �
� � ��� �

� �	 � �� � ��� �

� �	 � �� � ��� �

for � � � � � � � � ���	 �� � � � � ���	 �, while � �
��� 
��� .
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B. Compactly Supported Observations

In this section, we consider hidden Markov models with a
finite number of states and compactly supported observations.
More specifically, we assume that is a compact set in .
For such models, the following results can be shown.

Proposition 2: Assumptions 3 and 4 are true if the following
conditions are satisfied.

i) For each is analytic in on
entire .

ii) for all .

Corollary 2: Let Assumptions 1 and 2 and the conditions of
Proposition 2 hold. Then, the conclusions of Theorems 1–3 are
true.

The proof is provided in Section V.

Remark: The conditions of Proposition 2 are fulfilled if
the natural, exponential, or trigonometric parameterization is
applied to the state transition probabilities ,
and if the observation likelihoods are analytic
jointly in and . The latter holds when are
compactly truncated mixtures of beta, exponential, gamma,
logistic, normal, log-normal, Pareto, uniform, Weibull distribu-
tions, and when each of these mixtures is indexed by its weights
and by the “natural” parameters of its ingredient distributions.

C. Mixture of Observation Likelihoods

In this section, we consider the case when the observation
likelihoods are mixtures of known probability
density functions. More specifically, let be
integers, while is an open set and

for each

We assume that the state transition probabilities and the observa-
tion likelihoods are parameterized by vectors and
(respectively), i.e.,
for , . We also
assume

where , while
are known probability density func-

tions.
For the models specified in this section, the following results

hold.

Proposition 3: Assumptions 3 and 4 are true if the following
conditions are satisfied.

i) For each is analytic in on entire
.

ii) for all .

iii) and for all
, where .

Corollary 3: Let Assumptions 1 and 2 and the conditions of
Proposition 4 hold. Then, the conclusions of Theorems 1–3 are
true.

The proof is provided in Section V.

D. Gaussian Observations

This section is devoted to hidden Markov models with a finite
number of states and with Gaussian observations. More specif-
ically, and have the same meaning as in the previous sec-
tion, while and , where

for some

(12)

Similarly, as in Section III-C, we assume that the state transi-
tion probabilities and the observation likelihoods are indexed
by vectors and (respectively). We also assume

where .
For the models described in this section, the following results

can be shown.

Proposition 4: Assumptions 3 and 4 are true if the following
conditions are satisfied.

i) For each is analytic in on entire
.

ii) for all .
iii) for all .

Corollary 4: Let Assumptions 1 and 2 and the conditions of
Proposition 4 hold. Then, the conclusions of Theorems 1–3 are
true.

The proof is provided in Section V.

Remark: Unfortunately, Proposition 4 and Corollary 4 cannot
be extended to the case , since the models
specified in Section III-D do not satisfy Assumption 4 without
the condition that is a singleton (the details are
provided in Appendix III). However, this condition is not so
restrictive in practice, as is dense in and
provides an arbitrarily close approximation to .

IV. PROOF OF MAIN RESULTS

A. Outline of the Proof

Theorems 1–3 are proved in several stages. The proofs are
presented in Sections IV-B–IV-E. The main steps can be sum-
marized as follows.

Section IV-B is mainly focused on the stability properties
of optimal filter and its analytic continuation
(to be defined in Section IV-D). It is also concerned with the
stability of filter derivatives (also to be defined in
Section IV-B) and with the analytical properties of functions

and . In Lemma 1, the analytical proper-
ties (local boundedness and Lipschitz continuity) of
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and are studied, while Lemmas 2 and 3 consider the
stability properties (forgetting, boundedness, and ergodicity) of

. Lemma 1 is a consequence of Assump-
tion 4 and the Cauchy inequality for complex-valued analytic
functions, while Lemmas 2 and 3 are based on the existing re-
sults on the stability of the optimal filter. Lemmas 1–3 are nec-
essary prerequisite for Lemmas 4 and 5 and Theorem 1. The
most important results of Section IV-B are contained in Lemma
4. The lemma deals with the stability of the analytic continua-
tion of the optimal filter. Starting with the results of
Lemma 2 and relying on the principle of analytic continuation,
the lemma shows that forgets initial condition geo-
metrically in and uniformly in . This result is the foun-
dation of Theorem 1 and Corollary 5.

Section IV-C is focused on the properties of the asymptotic
log-likelihood . In this section, the analyticity of is
proved (Theorem 1) and the most general version of the Lo-
jasiewicz inequality for is provided (Corollary 5). These
results are a crucial prerequisite for the asymptotic analysis of
algorithm (3) (carried out in Section IV-E) and Theorems 2 and
3. In particular, without Lojasiewicz inequality (32) (notice that
the analyticity is required by any version of this inequality), it is
not possible to establish the results of Lemma 10 [i.e., inequali-
ties (59) and (60)], which themselves almost directly lead to the
convergence rate of and (Lemmas
11–13). The proof of Theorem 1 is based on the principle of an-
alytic continuation and the fact that the limit of uniformly con-
vergent complex-analytic functions is also analytic. Since this
fact is not true for real-analytic functions (and since is a
function of the optimal filter), it is necessary to demonstrate the
geometric forgetting not only for , but also for its ana-
lytic continuation (Lemma 4).

Section IV-D provides an equivalent representation of
algorithm (3) and studies its immediate properties. More
specifically, the section shows that recursion (3) is a stochastic
gradient search with additive noise. The section also provides
the basic asymptotic properties of the noise sequence
(to be defined in Section IV-D) and sequences

. In Lemma 5, the Poisson (34) associated with
algorithm (3) is analyzed and the basic properties of its solution
are demonstrated. Lemmas 6 and 7 study the asymptotic be-
havior of and : in Lemma
6, an upper bound on the convergence rate of is
derived, while the convergence of
is proved in Lemma 7. Lemma 5 follows from Lemmas 1–3 and
the results of [2, ch. II.2], while Lemma 6 is based on Lemma
5 and the techniques developed in [2, ch. II.1]. Lemmas 6 and
7 are important prerequisite for the asymptotic analysis con-
ducted in Section IV-E, i.e., for Lemma 8 and the construction
of Lyapunov functions (notice that both and

depend on ). In Section IV-E, the
asymptotic behavior of algorithm (3) is analyzed and Theorems
2 and 3 are proved. The main steps in the analysis can be
summarized as follows.

Step 1: Further asymptotic properties of
, and are provided in Lemmas

8–10. These lemmas are based on Taylor formula for Lyapunov
functions and Bellman–Gronwall and Lojasiewicz

inequalities (50) and (42). It is important to emphasize that the
standard form of Lojasiewicz inequality (5) (provided in The-
orem 1) cannot be applied at this stage of the analysis due to the
following reasons: i) (5) holds only locally in a close vicinity
of , and ii) there are no guarantees that

for any compact set ( and
are specified in Theorem 1). Hence, without knowing that

exists (which becomes evident in Lemma 15,
at the very end of the analysis), it is not possible to use (5)
to analyze the asymptotic behavior of . As opposed
to (5), inequality (42) (which is a direct consequence of the
form of Lojasiewicz inequality provided in Corollary 5) can be
applied to the asymptotic analysis of . The reasons are
as follows: i) exists (due to Lemma 7), and
ii) (42) is satisfied by all for which is sufficiently
close to ( is defined in the beginning of Section IV-E and
represents a compact set whose interior contains the limit point
of ).

Step 2: Relying on the results of Step 1 (Lemma 10),
is proved in Lemma 11.

The idea of the proof can be described as follows. If the
previous relation is not true, then there exists an increasing
sequence such that .
Consequently, the Lojasiewicz inequality (42) implies

(notice that ). Then,
the Taylor formula for and the algorithm’s representation
(33) yield

for and all sufficiently large . As
for and (due
to Lemma 8), we get for and
all sufficiently large . However, this is not possible, since

(due to Lemma 7).
Step 3: is proved

in Lemmas 12 and 13. The idea of the proof can be sum-
marized as follows. If the previous relation is not satis-
fied, then there exists an increasing sequence
such that . Consequently,

, while the Lojasiewicz inequality
(42) yields . The same inequality
also implies
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for all sufficiently large and (notice
that and that for
sufficiently large ). Then, owing to the Taylor formula for
and the algorithm’s representation (33), we have

for and all sufficiently large (no-
tice that for and that

follows from Lemma
8). Therefore, , which contra-
dicts .

Step 4: is shown (a direct conse-
quence of Lemmas 11 and 13). The proof is based on the fol-
lowing reasoning. Due to the Taylor formula for and the
algorithm’s representation (33), we have

for and all sufficiently large . Consequently, setting
and using the results of Steps 2 and 3, we get

for all sufficiently large (notice that ).
Step 5: is demonstrated in

Lemmas 14 and 15. The proof is based on the results of Steps
2–4 and the following relations:

where and is sufficiently large.
Step 6: Theorems 2 and 3 are proved. The convergence

and convergence rate of directly follow from the
results of Step 5, while the convergence rates of

are immediate consequences of Steps 2–4. As
and can be defined by (10) and (11), and

, the Lojasiewicz exponent at (notice that in Lemmas
10–15 and their proofs, the definition of and is based on

, another Lojasiewicz exponent specified in Corollary
5; also notice that the tighter convergence rates are obtained
with than with ).

B. Optimal Filter and Its Properties

The stability properties (forgetting and ergodicity) of the op-
timal filter (2), its derivatives (3), and its analytic continuation
(to be defined in the next paragraph) are studied in this section.
The analytical properties (local boundedness and local Lipschitz
continuity) of functions and are also con-
sidered here. The analysis mainly follows the ideas and results
of [24], [25], and [26].

Throughout this section, we rely on the following notation.
denotes the set

where ( can be any closed set in
satisfying ,

but the above one is selected for analytical convenience). For
and a sequence in denotes

finite subsequence . For
and sequences

in (respectively), let
and

( and are defined in Section II).
If (i.e., ), we also use notation

. Sim-
ilarly, if (i.e., ), we rely on notation

and .
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In this section, we also rely on the following notation.
and denote sets and

. For and are the transition
kernels of Markov chains

where (notice that do not de-
pend on ). For

, let

Lemma 1: Let Assumption 4 hold. Then, for any compact set
, there exist real numbers

such that

for all
, and .

Remark: Lemma 1 is a special case of Lemma 17 (provided
in Appendix I) and a direct consequence of Assumption 4 and
the Cauchy inequality for complex analytic functions.

Lemma 2: Let Assumptions 3 and 4 hold. Then, for any
compact set , there exist real numbers

such that

(13)

(14)

for all
and any sequences in

(respectively).

Remark: Lemma 2 is an extension of the results of [10],
[24]–[26], and [39]. It is proved in Appendix I.

Lemma 3: Let Assumptions 2–4 hold. Then, is well de-
fined and differentiable on . Moreover, for any compact set

, there exist real numbers
such that

(15)

(16)

(17)

for all
, where

Remark: Lemma 3 is an extension of the results of [24], [25],
and [39]. Its proof is provided in Appendix I.

Lemma 3: Let Assumptions 3 and 4 hold. Then, for any com-
pact set , there exist real numbers

such that the following is true.
i) is analytic in on

for each and any sequence in .
ii) Inequalities

hold for all
and any sequence in ( is specified
in Assumption 4).

Proof: Let be an arbitrary sequence in .
Moreover, let , while

.
First, we prove by induction (in ) that

(18)

for all .
Obviously, (18) is true when

. Suppose now that (18) holds for each
and some .

Then, Lemma 1 implies

for any
. Therefore

for any . Hence, (18)
is satisfied for all

.
Let . Since and

, it can be deduced
from Assumption 4 and (18) that is analytic in

on for each
(notice that a composition of two analytic functions is analytic
as well). Due to Assumption 4 and (18), we also have

(19)
for all
( is defined in Assumption 4). As a consequence of Cauchy
inequality for analytic functions and (19), there exists a real
number depending exclusively on
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( can be selected as ) such
that

for any

( denote the th component of
). Consequently, there exists another real number

depending exclusively on such that

(20)

for each
.

Let . Owing to Lemma 2,
we have

for all . Therefore,
for each

, which, together with (20) yields

for any
. Consequently

for each . Thus

(21)

for all . Let

. Now, we prove by induction (in ) that

(22)

for each . Obviously,
(22) is true when .
Suppose that (22) holds for all
and some . Then, (20) and (21) imply

for any , .
Therefore

for each . Hence, (22) holds for
all .

Let . As and

, it can be deduced
from (22) that is analytic in on

for each (notice that is
analytic in on for any ).

Since for , we
conclude from (22) that is analytic in on

for all

(notice that is analytic in on
for any ). On the

other side, (18) and (22) yield

(23)

for all
, and .

Let . Owing to (21) and
(22), we have

for any . Therefore



TADIĆ: ANALYTICITY, CONVERGENCE, AND CONVERGENCE RATE OF RECURSIVE MAXIMUM-LIKELIHOOD ESTIMATION 6415

for each . Conse-
quently, (20) and (22) yield

for each

(notice that

). Then, it is clear that
meet the requirements of the lemma.

C. Analyticity

In this section, using the results of the Section IV-B (Lemma
4), the analyticity of the objective function is shown and
Theorem 1 is proved. The proof is based on the analytic contin-
uation techniques and the methods developed in [15].

Proof of Theorem 1: Let

for and any sequence
in . Moreover, let , while

for . Then, it is straightfor-
ward to verify

(24)

for each . It is also easy to
show

(25)

for all , where
and

. On the other
side, Assumption 2 implies that is well defined and that
there exist real numbers such that

for each .
Let be an arbitrary compact set, while

. Owing to Assump-
tion 4 and Lemma 4, is analytic in on

for each and any sequence
in . Due to Assumption 4 and Lemma 4, we

also have

for all and any se-
quence in . Consequently, Cauchy inequality
for analytic functions implies that there exists a real number

such that

(26)

for each and any
sequence in . Since

(27)

for all , it follows from the dominated con-
vergence theorem and (26) that is differentiable (and
thus, analytic) in on for any

.
Let . Due to Lemmas 1 and 4, we have

(28)

(29)

for each
and any sequence in . Using

(27)–(29), we deduce that there exists a real number
such that the absolute value of the each term on the right-

hand side of (25) is bounded by for any
. Therefore

(30)

for all
. Consequently, (24) yields

(31)
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for each .

Owing to (30) and (31), there exists a function
such that converges to uniformly in

. As the uniform limit of analytic

functions is also an analytic function (see [40, Th. 2.4.1]),
is analytic on . On the other side, since

for all , Lemma 3 implies
for any . Then, it is clear that part (i) is true,

while part (ii) follows from the Lojasiewicz inequality (see, e.g.,
[20], [29], and [30]) and the analyticity of .

As a direct consequence of [20, Th. ŁI, p. 775] and Theorem
1, we have the following corollary:

Corollary 5: Let Assumptions 2–4 hold. Then, for any com-
pact set and real number , there exist real
numbers such that

(32)

for all satisfying .

Remark: In the special case when
and for some , and can

be selected as
and ( are specified in the statement of
Theorem 1).

D. Decomposition of Algorithm (3)

In this section, equivalent representations of recursion (3) are
provided and their asymptotic properties are analyzed relying on
the results of Section IV-B (Lemmas 1 and 3). The analysis is
based on the techniques developed in [2, Part II]. The results of
this section are a crucial prerequisite for the analysis carried out
in Section IV-E. The following notation is used in this section.
For , let , while

and ( is defined in Section IV-B). Then,
algorithm (3) admits the following representations for :

(33)

Moreover, we have

for . We also conclude

w.p.1 for and any Borel-measurable set (
is introduced in Section IV-B).

Lemma 5: Suppose that Assumptions 2–4 hold. Then, there
exists a Borel-measurable function with the
following properties.

i) is integrable with respect to and

(34)

for all .
ii) For any compact set and a real number ,

there exists a Borel-measurable function
such that

(35)

(36)

(37)

for all , where
.

Remark: Lemma 5 is a consequence of Lemmas 1–3 and the
results of [2, ch. II.2]. It is proved in Appendix II.

Lemma 6: Suppose that Assumptions 1–4 hold. Then,
there exists an event such that and such that

and converge on .

Remark: The proof of Lemma 6 is based on the techniques
developed in [2, ch. II.2]. It is provided in Appendix II.

Lemma 7: Suppose that Assumptions 1–4 hold. Then, on
and exists ( is

specified in the statement of Lemma 6).
Proof: Let be an arbitrary compact set, while

is an arbitrary sample from (notice that
all formulas which appear in the proof correspond to this ).
Obviously, in order to prove the lemma, it is sufficient to show
that exists and that .

Since converges and

for , we conclude (also notice
that is bounded on ). As

for , it is clear that exists. Let be
a Lipschitz constant of on and an upper bound of

on the same set. Now, we prove .
Suppose the opposite. Then, there exist and se-
quences (all depending on ) such that



TADIĆ: ANALYTICITY, CONVERGENCE, AND CONVERGENCE RATE OF RECURSIVE MAXIMUM-LIKELIHOOD ESTIMATION 6417

for
, and such that for .

Therefore

(38)

for . We also have

for . Consequently, . However,
this is not possible, since the limit process applied to
(38) would imply

Hence, .

E. Convergence and Convergence Rate

In this section, using the results of Sections IV-C and IV-D
(Corollary 5 and Lemmas 5 and 6), the convergence and con-
vergence rate of recursion (3) are analyzed and Theorems 2 and
3 are proved.

Throughout this section, we use the following notation. For
, let

For , let

For the same , let

while and . Then, it is
straightforward to verify

(39)

(40)

for .

Besides the notation introduced in the previous paragraph, we
also rely on the following notation in this section. For a compact
set denotes an upper bound of
on and a Lipschitz constant of on the same set. is
the set of the accumulation points of , while

and are the random quantity and the random sets (re-
spectively) defined by

on , and by

otherwise. Overriding the definition of in Theorem 3, we
specify random quantities as

(41)

on , and as

otherwise [ are introduced in the statement of
Corollary 5; later, once Theorem 2 is proved, it will be clear
that the definitions of provided in Theorem 3 and in (41) are
equivalent]. Random quantities are defined in the same
way as in (9)–(11). Functions and are defined by

if
otherwise

for .

Remark: On event is compact and satisfies
. Thus, are well defined on the

same event (what happens with these quantities outside does
not affect the results presented in this section). On the other side,
Corollary 5 implies

(42)

on for all satisfying .

Remark: Throughout this section, the following convention
is applied. Diacritic is used to denote a locally defined quantity,
i.e., a quantity whose definition holds only in the proof where
the quantity appears.

Lemma 8: Suppose that Assumptions 1–4 hold. Then,
on ( is specified in the statement

of Lemma 6).
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Proof: It is straightforward to verify

for . Therefore

for . Consequently, Lemma 6 implies

on .

Lemma 9: Suppose that Assumptions 1–4 hold. Let
(notice that everywhere). Then, there

exist a random quantity and an integer-valued random variable
such that everywhere and such that

(43)

(44)

(45)

(46)

on for ( is specified in the statement of
Lemma 6).

Proof: Let ,
, and , while . Moreover, let

while . Then, it is obvious that is
well defined, while Lemma 8 implies everywhere.
We also have

(47)

(48)

(49)

on for .

Let be an arbitrary sample from (notice that all
formulas which follow in the proof correspond to this ). Since

for , we have

for . Then, Bellman–Gronwall inequality yields

(50)

for . Consequently

for . Therefore

(51)

for (notice that for
). Thus

(52)

for . On the other side, combining (39)
and (40), we get

for . Then, (51) and (52) yield

(53)
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for . Owing to (47), (48), (51), and (52),
we have

(54)

(55)

for (notice that for
). Due to (40), (49), and (55), we have also

(56)

for (notice that ). Consequently

(57)

for . On the other side, (47)–(49), (53), and (57) imply

for . Therefore

(58)
for . Then, (43)–(46) directly follow from (54), (55), (56),
(57), and (58).

Lemma 10: Suppose that Assumptions 1–4 hold. Let
(notice that everywhere). Then, there exists

an integer-valued random variable such that
everywhere and such that

(59)

(60)

(61)

on for , where

( and are specified in the statements of Lemmas 6 and 9,
respectively).

Remark: Inequalities (59)–(61) can be interpreted in the fol-
lowing way: relations

(62)

(63)

(64)

are true on .
Proof: Let

and . Then, it is obvious that is well
defined, while Lemma 7 implies everywhere. On
the other side, since on , Lemma 9 [inequality
(45)] implies

(65)

on for . As on for
, (42) (i.e., Corollary 5) yields

(66)

on for .
Let be an arbitrary sample from (notice that all

formulas which follow in the proof correspond to this ). First,
we show (59). We proceed by contradiction: suppose that (59)
is violated for some . Consequently

(67)

and at least one of the following two inequalities is true:

(68)

If , then (66) implies

(notice that ). Thus, as a result
of one of two inequalities in (68), we get

i.e., . Then, (65) implies

(69)
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which directly contradicts (67). Hence, (59) is true for .
Owing to this, (66), and the fact that for , we
obtain

for (notice that on ; also notice that
). Thus, (60) is satisfied.
Now, let us prove (61). To do so, we again use contradiction:

suppose that (61) does not hold for some . Consequently,
we have and

(70)

(71)

Combining (70) with (already proved) (59), we get (69). On the
other side, (66) yields

(notice that ).
Therefore, (69) implies

Thus, which directly contradicts
(71). Hence, (60) is satisfied for .

Lemma 11: Suppose that Assumptions 1–4 hold. Then

(72)

(73)

on for , where function is defined by
( is specified in the statement of Lemma

6).
Proof: Let be an arbitrary sample from (notice

that all formulas that follow in the proof correspond to this ).
First, we prove (72). To do so, we use contradiction: assume that
(72) is not satisfied for some , and define recursively

for . Now, let us show by induction that
is nonincreasing: Suppose that

for and some . Consequently

Then, Lemma 10 [relations (59) and (62)] yields

i.e., . Thus, is nonincreasing.
Therefore

However, this is not possible, as (due to
Lemma 7). Hence, (72) indeed holds for .

Now, (73) is demonstrated. Again, we proceed by contradic-
tion: suppose that (73) is violated for some . Consequently

(notice that ), which, together with Lemma 10
[relations (59) and (62)], yields

Then, (72) implies

However, this directly contradicts our assumption that violates
(73). Thus, (73) is satisfied for .

Lemma 12: Suppose that Assumptions 1–4 hold. Let
. Then

(74)

on ( is specified in the statement of Lemma 6).
Proof: We prove the lemma by contradiction: assume that

(74) is violated for some sample from (notice that
the formulas which follow in the proof correspond to this ).
Consequently, there exists such that

(75)

for .
Let be defined recursively as for

. In what follows in the proof, we consider separately the
cases and .

Case : Owing to Lemma 10 [relations (61) and (64)]
and (75), we have

for [notice that due to (75); also notice that
]. Therefore

for . Then, (75) implies
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for . However, this is impossible, since the limit process
(applied to the previous relation) yields .

Hence, (74) holds when .

Case : Due to Lemma 10 [relations (60) and (63)] and
(75), we have

for . Consequently

for . Then, (75) yields

for . However, this is not possible, as the limit process
(applied to the previous relation) implies . Thus,

(74) holds in the case as well.

Lemma 13: Suppose that Assumptions 1–4 hold. Let
. Then

(76)

on ( is specified in the statement of Lemma 6).
Proof: We use contradiction to prove the lemma: suppose

that (76) is violated for some sample from (notice
that the formulas which appear in the proof correspond to this

). Since , it can be deduced from
Lemma 12 that there exist such that

(77)

(78)

(79)

(80)

and such that

(81)

Let . As a direct consequence of Lemma 11 and
(77), we get

Consequently, Lemma 9 and (40) imply

for (notice that
). Then, (77) and (79) yield

(82)

(83)

for (notice that
for ). Using (78) and (83), we conclude .
In the rest of the proof, we consider separately the cases
and .

Case : Owing to Lemma 10 [relations (61) and (64)]
and (77), (82), we have

[notice that ]. Therefore

However, this directly contradicts (79) and the fact that
. Thus, (76) holds when .

Case : Using Lemma 10 [relations (60) and (63)] and
(82), we get

However, this is impossible due to (79) and the fact that
. Hence, (76) holds in the case as well.

Lemma 14: Suppose that Assumptions 1–4 hold. Then

(84)

on for ( is specified in the statement
of Lemma 6).

Proof: Let be an arbitrary sample from , while
is an arbitrary integer (notice that all formulas

which appear in the proof correspond to these ). To show
(84), we consider separately the cases
and .

Case : Due to Lemma 9, we have

(85)
On the other side, since (notice
that ), Lemma 10 [relations (59) and (62)] implies
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i.e., . Then, (85) yields

[notice that ; also notice that , which
implies ]. Hence, (84) is true when

.

Case : Using Lemma 9 and (40), we
get

(notice that and ). On the other
side, owing to Lemma 9 and (39), we have

(notice that ). Consequently

Thus, (84) holds in the case .

Lemma 15: Suppose that Assumptions 1–4 hold. Then, there
exists a random quantity such that everywhere
and such that

(86)

on ( is specified in the statement of Lemma 6).
Proof: Let and ,

while is an arbitrary sample from (notice that all for-
mulas which follow in the proof correspond to this ).

First, we show

(87)

If , then , and consequently,
(87) holds. If , then

and thus, . Therefore, (87) is true when
. If , then

, and hence, (notice that
imply ). Consequently, (87) is true

when .
Using Lemmas 11 and 13, we get

(88)

(89)

Since for , and

for , we conclude from (88) and (89) that there ex-
ists (depending on ) such that

, and

(90)

for . Then, (39) and Lemma 9 imply

(91)

for (notice that ).
Let be recursively defined as for

. Due to Lemma 14, we have

(92)

for . As

for [use (90)], we get

(93)

(94)
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for (notice that ). Since

for (notice that for ), we
have

(95)

for . Consequently, (92) and (93) imply

(96)

for [notice that ]. Using
(91) and (96), we get

for satisfying
. Then, it is obvious that (86) is true.

Proof of Theorems 2 and 3: Owing to Lemmas 7 and 15,
we have that on exists and satisfies

. Consequently,
on . Thus, random quantities defined in this section
coincide with introduced in Theorem 3 (see the remark after
Corollary 5). Then, Lemmas 11, 13, and 15 imply that (6)–(8)
are true on .

V. PROOF OF PROPOSITIONS 1–4

Proof of Proposition 1: Owing to conditions i) and ii) of
the proposition, for any compact set , there exists a real
number such that

(97)

for all . Hence, Assumption 3 is
satisfied. On the other side, condition ii) implies that
has a (complex-valued) analytic continuation with
the following properties.

a) maps into
.

b) for all
.

c) For any compact set , there exists a real number
such that is analytic in on

for each .

Relying on , we define quantities
. More specifically, for

is an matrix whose entry is ,
while

if
otherwise

(98)

if
otherwise

(99)

for .
Let be an arbitrary compact set. Since

for all [due to (97)], we
conclude that there exists a real number such that

for all
. Therefore, are analytic in on

for any . Consequently,
are uniformly bounded in on

. Thus, Assumption 4 is satisfied as well.

Proof of Proposition 2: Conditions i) and ii) of the propo-
sition imply that for any compact set , there exists a
real number such that
for all . Thus, Assumption 3 holds.
On the other side, as a result of condition ii), has
a (complex-valued) analytic continuation with the
following properties.

a) maps into
.

b) for all
.

c) For any compact set , there exists a real number
such that is analytic in on

for each .

Relying on , we define quantities
in the same way as in the proof of Propo-

sition 1. More specifically, for is
an matrix whose entry is , while

are defined by (98) and (99) for
. Let be an arbitrary compact set. As

for any ,
we have that there exists a real number such that

for all
[notice that is analytic in

on ]. Therefore,

are analytic in on for
any . Moreover, are uniformly
bounded in on . Hence,
Assumption 4 holds as well.

Proof of Proposition 3: For
, let . Then, we have

for all . We also have that for any
compact set , there exists a real number
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such that for each ,
. Consequently

for all and any compact set . Hence,
Assumption 3 holds [set ]. On the
other side, condition i) implies that for each

has a (complex-valued) analytic continuation
with the following properties.

a) maps into .
b) for all .
c) For any compact set , there exists a real number

such that is analytic in on
for each .

Relying on , we define some new quantities. More
specifically, for

, let

while is an matrix whose entry is
. Moreover, let be defined for

in the same way as in (98) and (99).
Let be arbitrary compact set. Since

for all
, we deduce that there exists a real number such

that for all
. Consequently

for all . Therefore,
are analytic in on

for each . Moreover

for all . Then, it is clear
that Assumption 4 holds as well.

Lemma 16: Let the conditions of Proposition 4 hold. Then,
have (complex-valued) analytic continu-

ations (respectively) with the following
properties.

i) map into
(respectively).

ii) for all
.

iii) For each , there exist real numbers
such that are analytic

in on for any , and such
that

for all .
Proof: Due to condition i) of Proposition 4, has a

(complex-valued) analytic continuation with the fol-
lowing properties.

a) maps into .
b) for all .
c) For any , there exists a real number

such that is analytic in on for each
.

On the other side, the analytic continuation of
is defined by

for .
Let for

. Moreover, for
is an matrix whose entry is

, while are defined for
in the same way as in (98) and (99).

Let be arbitrarily vectors
in (respectively), while . Obviously, it can
be assumed without loss of generality that for each

. Since

for all , there exist real
numbers such that is analytic in on

for any , and such that

(100)

(101)
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for all
.

Therefore, we have

for any
. We also have

for all

. Consequently, there exists a real number
such that

(102)

for all , and such that

(103)

for any [to
show that (103) holds for all sufficiently large , no-
tice that for ].
As is uniformly continuous in on

and for

any , there also exists a real number
such that

(104)

for all . Hence

(105)

for any .

Let . As a result of
(101) and (102), we have

(106)

for all
. Using (100), (101), and (103), we

get

(107)

for all
. Combining (100), (101),

(104), and (105), we obtain

(108)

for any
. Then, it can be concluded

from (107) and (108) that are analytic in
on for each . On the other

side, (102) and (106)–(108) imply

for any . Hence, the lemma’s
assertion holds.

Proof of Proposition 4: Let be an arbitrary compact
set. Then, owing to conditions i) and ii) of the proposition, there
exists a real number such that

for all satisfying for some
. Therefore
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for all
satisfying . Thus, Assumption 3 is true. Since the col-
lection of sets covers and since is com-
pact, there exists a finite subset of such that is covered
by . Let

( and are defined in the statement of
Lemma 16). Obviously, . It can also
be deduced that for each is con-
tained in one of the sets from the collection . Thus,

. Then, as an
immediate consequence of Lemma 16, we have that Assump-
tion 4 holds.

VI. CONCLUSION

We have studied the asymptotic properties of recursive max-
imum-likelihood estimation in hidden Markov models. We have
analyzed the asymptotic behavior of the asymptotic log-like-
lihood function and the convergence and convergence rate of
the recursive maximum-likelihood algorithm. Using the prin-
ciple of analytic continuation, we have shown the analyticity
of the asymptotic log-likelihood for analytically parameterized
hidden Markov models. Relying on this result and Lojasiewicz
inequality, we have demonstrated the point convergence of the
recursive maximum-likelihood algorithm, and we have derived
relatively tight bounds on the convergence rate. The obtained
results cover a relatively broad class of hidden Markov models
with finite state space and continuous observations. They can
also be extended to batch (i.e., nonrecursive) maximum-likeli-
hood estimators such as those studied in [6], [12], [27], and [36].
In the future work, attention will be given to the possibility of
extending the result of this paper to hidden Markov models with
continuous state space. The possibility of obtaining similar rate
of convergence results for nonanalytically parameterized hidden
Markov models will be explored as well.

APPENDIX I

In this Appendix, the proofs of Lemmas 1–3 are provided.

Remark: Throughout the Appendix, the following conven-
tion is applied. Diacritic is used to denote a locally defined
quantity, i.e., a quantity whose definition holds only in the proof
where the quantity appears.

Lemma 17: Let Assumption 4 hold. Then, for any compact
set , there exist real numbers
such that

(109)

(110)

(111)

(112)

(113)

(114)

(115)

for all

[ is specified in Assumption 4].
Proof: Let ( is defined in Assumption 4).

Then, Cauchy inequality for complex-analytic functions (see,
e.g., [40, Prop. 2.1.3]) and Assumption 4 imply that there exists
a real number such that

for all [
denote the gradient and Hessian with respect to , while

stands for the th component of ]. Conse-
quently, there exists another real number such
that

for any . There-
fore

for each . We also have
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for each . Then,
it can be deduced that there exists a real number
such that (109)–(115) hold for each

.

Proof of Lemma 2: For ,
let . For

and sequences
in (respectively), let ( denotes the
unit matrix) and

Then, it is easy to demonstrate

for each and any
sequences in (respectively).
Let be an arbitrary compact set. Then, using [39, Th.
3.1, Lemma 6.6] (with a few straightforward modifications), it
can be deduced from Assumption 3 that there exist real numbers

such that

(116)

(117)

hold for all
and any sequences in .4

Consequently, we get

for all and any sequences
in .

Due to Lemma 17 and (117), we have

for all and any sequences
in . Then, it is clear that there

exist real numbers such that (13)

4To deduce this, note that �� �� � � � ���� � ���� have the same
meaning, respectively, as quantities �� ��� � � � ��� � �� �� ��� ��� � � ap-
pearing in [39]. Inequality (116) can also be obtained from [25, Th. 2.1] or [26,
Th. 4.1]. Similarly, (117) can be deduced from [24, Lemmas 3.4 and 4.3] (no-
tice that � ���� � ��� have the same meaning, respectively, as 	 �
� �	 � 
 � specified in [24, Sec. 5]).

and (14) hold for all
and any sequence in .

Lemma 18: Let Assumptions 3 and 4 hold. Then, for any
compact set , there exists a real number
such that

(118)

(119)

for all and any
sequence in .

Proof: Let be arbitrary set. Then, using [39, Th.
3.2] (with a few obvious modifications), it can be deduced that
there exist real numbers such that

(120)

for all
and any sequence in .

Let be an arbitrary sequence in . It is straight-
forward to verify

(121)

(122)

for all . Since

for any Lemmas 2 and 17
yield

(123)

for the same [notice that
]. On the other side, as
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for each ,
Lemmas 2 and 17 and (120) imply

(124)

for the same [notice that
]. Combining (121)–(124), we conclude that

there exists a real number such that (118) and
(119) hold for all
and any sequence in .

Proof of Lemma 3: Let . Moreover, for
, , let

while

for . Consequently, Lemma 17 yields

for all
and any compact set , where

. Then, owing to [39, Th. 4.1
and 4.2], there exist functions and for
any compact set , there exist real numbers

such that the following is true:

(125)

(126)

for all .5

On the other side, it is easy to show

for all . It is also easy to
demonstrate

for all
. Thus, for any compact set , there exists a real

number such that

(127)

(128)

for all
.

It is straightforward to verify

(129)

for each , where
. It is also easy to demonstrate

(130)

for all (here, stands for the
zero matrix). Combining (125) and (129), we deduce that on

is well defined and satisfies . On the other side,
Lemmas 2 and 17 yield

for each and any compact set .
Therefore

5The same result can also be obtained from [23, Th. 5.4]
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for all and any compact set
. Consequently, the dominated convergence theorem and

(130) imply

for all . As
and converge (respectively) to and uni-
formly in for all and any compact set

[due to (127) and (128)], we conclude that on
is differentiable and satisfies . Owing to
Lemmas 2, 17, and 18, we have

for all . Therefore

(131)

for each . Since
and , it can be deduced from (127), (128), and (131)
that for any compact set , there exist real numbers

such that (15)–(17) hold for all
.

APPENDIX II

Lemmas 5 and 6 are proved in this Appendix.

Lemma 19: Suppose that Assumption 1 holds. Then, there
exists a real number such that .

Proof: Let
. Then, using the Hölder inequality, we get

Since for and

it is obvious that converges.

Proof of Lemma 5: Let be an arbitrary compact set.
Owing to Lemmas 1 and 3, there exists a real number

such that

(132)

for all [ stands for
]. Consequently, is well

defined and finite for each . We also have

for each . Then, using Lemma 3,
it can be deduced that there exist real numbers

such that

(133)

for all [
is defined as ].

Let . Moreover, let
for and for

. Then, it can be concluded that
there exists a real number such that

(134)

for all .
For , let

Since
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for all , we deduce from (132)
that is well defined, integrable, and satisfies (34) and (35)
[notice that ]. On
the other hand, (133) and (134) imply

for any [set
in (133)]. Thus, (36) is true for each

.
Let and . Due to Lemma 2, we

have

(135)

for each [notice that depends only on the
first elements of , and that is sufficient for
(135) to hold]. Consequently

for all . Hence, (37) is true for all
.

Proof of Lemma 6: Let be an arbitrary compact
set, while is an arbitrary number in . Moreover, let

be an arbitrary locally Lipschitz continuous func-
tion. Obviously, in order to prove the lemma, it is sufficient
to demonstrate that and con-
verge w.p.1 on (to show the convergence of

, set and for all , where
stands for unit matrix; to demonstrate the convergence
of , set and for each ,
where ). Let be a real number
such that (its existence is demonstrated in
Lemma 19, Appendix II), while

Moreover, for , let

Then, it is straightforward to verify

(136)

(137)

(138)

for .
Owing to Assumption 1, we have

as . Consequently

(139)

(140)

On the other side, as a consequence of Lemma 5, we get

for all . Due to the same lemma, we have

for all . Then, Lemma 5 and (139) yield

(141)
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(142)

for any . Moreover, Lemma 5 and (140) imply

(143)

(144)

(145)

for each .
Owing to (142)–(145), series

converge w.p.1 on and
w.p.1 on the same event. On the other hand, we have

w.p.1 for every , where
. Hence, is a mar-

tingale-difference sequence. Combining this with (141) and
using the martingale convergence theorem (see [14, Corol-
lary 2.2]), we get that is convergent w.p.1 on

. Then, (136) implies that
converges w.p.1 on . Hence, event with the
required properties exits.

APPENDIX III

In this Appendix, we demonstrate that Assumption 4 does
not hold for the models specified in Section III-D when

(i.e., when includes points from ).
To do so, we use the following notation. For

, and , let

Remark: would be a unique
analytic continuation of if such a continuation existed.
However, due to Lemma 20, even if the continuation exists, it
cannot satisfy (4) (i.e., Assumption 4).

Lemma 20: Let conditions i) and ii) of Proposition 4 hold,
while are arbitrary vectors. Then, there
exist sequences in (respectively)
such that and

(146)

( may be dependent on ).
Proof: admits the representation , where

. Without loss
of generality, it can be assumed that there exists an integer
(which may depend on ) with the following properties: i)

, ii) for each , iii) for all
, where . It can

also be assumed without loss of generality that , where
.

Let for , while
.

Moreover, let for , while

for . Furthermore, let
for .

Then, it is straightforward to verify

It is also easy to show

[notice that ]. Consequently

[notice that
for all ; also notice that due to condition ii) of Propo-
sition 2, for each ], wherefrom (146) directly
follows.
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