Multi-level functional principal components analysis models for replicated genomics time series data sets

Maurice Berk

Imperial College London

September 11th, 2012

Talk outline

- Introduction
 - Background & case study
 - Single-level models
- Multi-level Models
 - Reduced Rank FPCA Models
 - Simulation Study
 - Issues
- Conclusions

• Want to understand the immune response to infection with BCG

- Want to understand the immune response to infection with BCG
- Which genes are switched on (or off) by BCG infection?

- Want to understand the immune response to infection with BCG
- Which genes are switched on (or off) by BCG infection?
- Collect blood samples from healthy human volunteers (replicates)

- Want to understand the immune response to infection with BCG
- Which genes are switched on (or off) by BCG infection?
- Collect blood samples from healthy human volunteers (replicates)
- Infect the blood samples with BCG

- Want to understand the immune response to infection with BCG
- Which genes are switched on (or off) by BCG infection?
- Collect blood samples from healthy human volunteers (replicates)
- Infect the blood samples with BCG
- Perform microarray hybridizations at several time points after infection

- Want to understand the immune response to infection with BCG
- Which genes are switched on (or off) by BCG infection?
- Collect blood samples from healthy human volunteers (replicates)
- Infect the blood samples with BCG
- Perform microarray hybridizations at several time points after infection
- For every gene, end up with one time series per volunteer

Current State of Play

 FDA is a popular modelling choice for genomics time series data sets (see Coffey and Hinde, 2011)

Current State of Play

- FDA is a popular modelling choice for genomics time series data sets (see Coffey and Hinde, 2011)
- Replicated data sets have received much less attention but see Storey et al (2005), Liu & Yang (2009) and Berk et al (2011)

Current State of Play

- FDA is a popular modelling choice for genomics time series data sets (see Coffey and Hinde, 2011)
- Replicated data sets have received much less attention but see Storey et al (2005), Liu & Yang (2009) and Berk et al (2011)
- But these methods model each gene independently!

- FDA is a popular modelling choice for genomics time series data sets (see Coffey and Hinde, 2011)
- Replicated data sets have received much less attention but see Storey et al (2005), Liu & Yang (2009) and Berk et al (2011)
- But these methods model each gene independently!
- Multi-level approaches exist in other domains Di et al (2009) and Zhou et al (2010)

The functional mixed-effects model

•
$$y_i(t) = \mu(t) + v_i(t) + \epsilon(t)$$

The functional mixed-effects model

We can represent functions $\mu(t)$ and $v_i(t)$ using splines:

LMM Representation

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\mu} + \mathbf{X}_i \mathbf{v}_i + \boldsymbol{\epsilon}_i$$

and have a linear mixed-effects model

- Impose distributions on \mathbf{v}_i and ϵ_i
- ullet Treat random-effects $oldsymbol{v}_i$ as missing data in the EM algorithm

A multi-level functional mixed-effects model

Definition

$$y_{ij}(t) = \mu(t) + f_i(t) + g_{ij}(t) + \epsilon_{ij}(t)$$

- \bullet $\mu(t)$ is the grand mean across all genes
- $f_i(t)$ is the gene specific deviation from that grand mean
- ullet $g_{ij}(t)$ is the replicate specific deviation from the gene mean

Could represent the functions $\mu(t)$, $f_i(t)$ and $g_{ij}(t)$ using splines as before . . .

Functional Principal Components Analysis

 \dots but as all gene means are now being estimated simultaneously, it would be better to do a functional PCA

... but as all gene means are now being estimated simultaneously, it would be better to do a functional PCA

Karhunen-Loève Decomposition

$$y_{ij}(t) = \mu(t) + \sum_{k=1}^{\infty} \xi_k(t) \alpha_{ik} + \sum_{l=1}^{\infty} \zeta_{il}(t) \beta_{ijl} + \epsilon_{ij}(t)$$

- $\xi_k(t)$ is the k-th PC function at the gene level
- α_{ik} is the loading on PC function k for gene i
- $\zeta_{il}(t)$ is the *l*-th PC function at the replicate level, for gene i
- β_{ijl} is the loading on PC function l for replicate j for gene i

Reduced Rank Functional Principal Components Analysis

Truncated Decomposition

$$y_{ij}(t) = \mu(t) + \sum_{k=1}^K \xi_k(t) lpha_{ik} + \sum_{l=1}^{L_i} \zeta_{il}(t) eta_{ijl} + \epsilon_i(t)$$

Reduced Rank Functional Principal Components Analysis

Truncated Decomposition

$$y_{ij}(t) = \mu(t) + \sum_{k=1}^K \xi_k(t) lpha_{ik} + \sum_{l=1}^{L_i} \zeta_{il}(t) eta_{ijl} + \epsilon_i(t)$$

LMM Representation

$$\mathbf{y}_{ij} = \mathbf{B}_{ij}\boldsymbol{\theta}_{\mu} + \sum_{k=1}^{K} \mathbf{B}_{ij}\boldsymbol{\theta}_{\alpha_{k}}\alpha_{ik} + \sum_{l=1}^{L_{i}} \mathbf{B}_{ij}\boldsymbol{\theta}_{\beta_{i_{l}}}\beta_{ijl} + \boldsymbol{\epsilon}_{ij}$$

Reduced Rank Functional Principal Components Analysis

Truncated Decomposition

$$y_{ij}(t) = \mu(t) + \sum_{k=1}^{K} \xi_k(t) \alpha_{ik} + \sum_{l=1}^{L_i} \zeta_{il}(t) \beta_{ijl} + \epsilon_i(t)$$

LMM Representation

$$\mathbf{y}_{ij} = \mathbf{B}_{ij}\boldsymbol{\theta}_{\mu} + \sum_{k=1}^{K} \mathbf{B}_{ij}\boldsymbol{\theta}_{\alpha_{k}}\alpha_{ik} + \sum_{l=1}^{L_{i}} \mathbf{B}_{ij}\boldsymbol{\theta}_{\beta_{i_{l}}}\beta_{ijl} + \boldsymbol{\epsilon}_{ij}$$

Distributional Assumptions and Constraints

$$oldsymbol{lpha}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{D}_{lpha}) \quad oldsymbol{eta}_{ij} \sim \mathcal{N}(\mathbf{0}, \mathbf{D}_{eta_i}) \quad oldsymbol{\epsilon}_{ij} \sim \mathcal{N}(\mathbf{0}, \sigma_i^2 \mathbf{I}_{N_{ij}}) \quad oldsymbol{lpha}_{\mathbf{i}} \perp oldsymbol{eta}_{\mathbf{ij}} \perp oldsymbol{\epsilon}_{\mathbf{ij}}$$

$$\mathbf{B}^{\mathsf{T}}\mathbf{B} = \mathbf{I} \quad \mathbf{\Theta}_{\alpha}^{\mathsf{T}}\mathbf{\Theta}_{\alpha} = \mathbf{I} \quad \mathbf{\Theta}_{\beta_{i}}^{\mathsf{T}}\mathbf{\Theta}_{\beta_{i}} = \mathbf{I}$$

Comparison with Zhou et al (2010)

- Considered spatial correlations between the variables
- They assume second-level variance is the same for all variables
- They assume the error variance is not variable dependent
- Illustrated on a data set with three variables

Simulation setting

- Varied number of replicates (5, 10, 20)
- Varied number of genes (100, 1000, 10000)
- Fixed number of time points (5)
- Fixed basis (B-splines, 1 knot)
- Fixed grand mean
- Fixed 2 PCs at the gene level
- Fixed 1 PC at the replicate level
- ullet Fixed variance components D_lpha and D_{eta_i}
- Generated 1000 data sets for each condition

Simulation setting

Simulation setting

Mean-squared error of gene-level curves

Multi-level model

		Number of Replicates		
		5	10	20
Number of Genes	100	0.000406	0.000195	0.0000953
	1000	0.000348	0.000167	0.0000813
	10000	0.000342	0.000164	0.0000799

Gene-at-a-time model

		Number of Replicates		
		5	10	20
Number of Genes	100	0.00226	0.00113	0.000562
	1000	0.00225	0.00113	0.000564
	10000	0.00226	0.00113	0.000564

Real data fits

Initialised gene-level PC loadings

The solution

LMM Representation

$$\mathbf{y}_{ij} = \mathbf{B}_{ij} oldsymbol{ heta}_{\mu} + \sum_{k=1}^{K} \mathbf{B}_{ij} oldsymbol{ heta}_{lpha_k} lpha_{ik} + \sum_{l=1}^{L_i} \mathbf{B}_{ij} oldsymbol{ heta}_{eta_{i_l}} eta_{ijl} + oldsymbol{\epsilon}_{ij}$$

Distributional Assumptions and Constraints

$$lpha_{\mathit{ik}} \sim \mathcal{S} t \mathcal{N}(\xi_k, \sigma^2_{lpha_k}, \lambda_k,
u_k)$$

$$oldsymbol{eta}_{ij} \sim \mathcal{N}(\mathbf{0}, \mathbf{D}_{eta_i}) \quad oldsymbol{\epsilon}_{ij} \sim \mathcal{N}(\mathbf{0}, \sigma_i^2 \mathbf{I}_{N_{ij}}) \quad oldsymbol{lpha}_{\mathbf{i}} \perp oldsymbol{eta}_{\mathbf{i}\mathbf{j}} \perp oldsymbol{\epsilon}_{\mathbf{i}\mathbf{j}}$$

$$\mathbf{B}^T \mathbf{B} = \mathbf{I} \quad \mathbf{\Theta}_{\alpha}^T \mathbf{\Theta}_{\alpha} = \mathbf{I} \quad \mathbf{\Theta}_{\beta_i}^T \mathbf{\Theta}_{\beta_i} = \mathbf{I}$$

The skew-t-normal distribtuion

$$f(\alpha_{ik}|\xi_k,\sigma^2_{\alpha_k},\lambda_k,\nu_k) = 2t_{\nu_k}(\alpha_{ik}|\xi_k,\sigma^2_{\alpha_k})\Phi\left(\frac{\alpha_{ik}-\xi_k}{\sigma_{\alpha_k}}\right)$$

Implications

ullet \mathbf{y}_{ij} now has an unknown distribution

Implications

- **y**_{ii} now has an unknown distribution
- If all α_{ik} , the β_{ikl} and ϵ_{ij} were skew-t-normally distributed with common degrees of freedom then the distribution would be known

Implications

- y_{ii} now has an unknown distribution
- If all α_{ik} , the β_{ikl} and ϵ_{ij} were skew-t-normally distributed with common degrees of freedom then the distribution would be known
- Can use the Monte-Carlo EM algorithm to approximate the required conditional expectations at the E-step

It works

It works

Conclusions

- Due to the technology involved, ethical constraints and the nature of the genome, replicated genomics time series data sets really do call for specific, sophisticated models
- The approach presented here is currently completely impractical
- A multi-level model is worth pursuing
- Functional PCA is hard for non-FDA specialists to understand
- Have not considered correlations amongst genes

Acknowledgements

Acknowledgements:

- PhD supervisors Giovanni Montana and Michael Levin
- Cheryl Hemingway for providing access data presented here
- Wellcome Trust

Additional Resources:

- My website: http://www2.imperial.ac.uk/~mab201
- sme R package availabe on CRAN