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A motivating genomics experiment

Want to understand the immune response to infection with BCG

Which genes are switched on (or off) by BCG infection?

Collect blood samples from healthy human volunteers (replicates)

Infect the blood samples with BCG

Perform microarray hybridizations at several time points after infection

For every gene, end up with one time series per volunteer
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Raw Data
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Tumor necrosis factor (TNF superfamily, member 2)
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Current State of Play

FDA is a popular modelling choice for genomics time series data sets (see
Coffey and Hinde, 2011)

Replicated data sets have received much less attention — but see Storey
et al (2005), Liu & Yang (2009) and Berk et al (2011)

But these methods model each gene independently!

Multi-level approaches exist in other domains — Di et al (2009) and Zhou
et al (2010)
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The functional mixed-effects model

yi (t) = µ(t) + vi (t) + ε(t)
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The functional mixed-effects model

We can represent functions µ(t) and vi (t) using splines:

LMM Representation

yi = Xiµ + Xivi + εi

and have a linear mixed-effects model

Impose distributions on vi and εi

Treat random-effects vi as missing data in the EM algorithm
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A multi-level functional mixed-effects model

Definition

yij(t) = µ(t) + fi (t) + gij(t) + εij(t)

µ(t) is the grand mean across all genes

fi (t) is the gene specific deviation from that grand mean

gij(t) is the replicate specific deviation from the gene mean

Could represent the functions µ(t), fi (t) and gij(t) using splines as before . . .
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Functional Principal Components Analysis

. . . but as all gene means are now being estimated simultaneously, it would be
better to do a functional PCA

Karhunen-Loève Decomposition

yij(t) = µ(t) +
∞∑
k=1

ξk(t)αik +
∞∑
l=1

ζil(t)βijl + εij(t)

ξk(t) is the k-th PC function at the gene level

αik is the loading on PC function k for gene i

ζil(t) is the l-th PC function at the replicate level, for gene i

βijl is the loading on PC function l for replicate j for gene i
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Reduced Rank Functional Principal Components Analysis

Truncated Decomposition

yij(t) = µ(t) +
K∑

k=1

ξk(t)αik +

Li∑
l=1

ζil(t)βijl + εi (t)

LMM Representation

yij = Bijθµ +
K∑

k=1

Bijθαkαik +

Li∑
l=1

Bijθβil
βijl + εij

Distributional Assumptions and Constraints

αi ∼ N (0,Dα) βij ∼ N (0,Dβi ) εij ∼ N (0, σ2
i INij ) αi ⊥ βij ⊥ εij

BTB = I ΘT
αΘα = I ΘT

βi
Θβi = I
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Comparison with Zhou et al (2010)

Considered spatial correlations between the variables

They assume second-level variance is the same for all variables

They assume the error variance is not variable dependent

Illustrated on a data set with three variables
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Simulation setting

Varied number of replicates (5, 10, 20)

Varied number of genes (100, 1000, 10000)

Fixed number of time points (5)

Fixed basis (B-splines, 1 knot)

Fixed grand mean

Fixed 2 PCs at the gene level

Fixed 1 PC at the replicate level

Fixed variance components Dα and Dβi

Generated 1000 data sets for each condition
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Simulation setting
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Simulation setting
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Simulation setting results

Mean-squared error of gene-level curves

Multi-level model

Number of Replicates
5 10 20

Number of Genes
100 0.000406 0.000195 0.0000953

1000 0.000348 0.000167 0.0000813
10000 0.000342 0.000164 0.0000799

Gene-at-a-time model

Number of Replicates
5 10 20

Number of Genes
100 0.00226 0.00113 0.000562

1000 0.00225 0.00113 0.000564
10000 0.00226 0.00113 0.000564
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Real data fits
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Initialised gene-level PC loadings

Principal Component 1
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The solution

LMM Representation

yij = Bijθµ +
K∑

k=1

Bijθαkαik +

Li∑
l=1

Bijθβil
βijl + εij

Distributional Assumptions and Constraints

αik ∼ StN (ξk , σ
2
αk
, λk , νk)

βij ∼ N (0,Dβi ) εij ∼ N (0, σ2
i INij ) αi ⊥ βij ⊥ εij

BTB = I ΘT
αΘα = I ΘT

βi
Θβi = I

The skew-t-normal distribtuion

f (αik |ξk , σ2
αk
, λk , νk) = 2tνk (αik |ξk , σ2

αk
)Φ
(

αik−ξk
σαk

)
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Implications

yij now has an unknown distribution

If all αik , the βikl and εij were skew-t-normally distributed with common
degrees of freedom then the distribution would be known

Can use the Monte-Carlo EM algorithm to approximate the required
conditional expectations at the E-step
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It works
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It works
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Conclusions

Due to the technology involved, ethical constraints and the nature of the
genome, replicated genomics time series data sets really do call for
specific, sophisticated models

The approach presented here is currently completely impractical

A multi-level model is worth pursuing

Functional PCA is hard for non-FDA specialists to understand

Have not considered correlations amongst genes
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