Constructing functional linear filters

Denis Bosq

LSTA, Université Pierre et Marie Curie - Paris 6, France

September 2012, Bristol
1. Measurable linear transformations
2. Innovation of ARMAH processes
3. Inverse problems
4. Computing linear filters in Hilbert spaces
5. Statistics...
Introduction

Linear prediction in large dimensions

Example: evolution of US Economy based on simultaneous observation of 500 series

Goal: Explicit expression of the Best Linear Predictor in a function space

Difficulty: The associated linear operator is, in general, NOT continuous
Linear prediction in large dimensions

Example: evolution of US Economy based on simultaneous observation of 500 series

Goal: Explicit expression of the Best Linear Predictor in a function space

Difficulty: The associated linear operator is, in general, NOT continuous
Linear prediction in large dimensions

Example: evolution of US Economy based on simultaneous observation of 500 series

Goal: Explicit expression of the Best Linear Predictor in a function space

Difficulty: The associated linear operator is, in general, NOT continuous
Linear prediction in large dimensions

Example: evolution of US Economy based on simultaneous observation of 500 series

Goal: Explicit expression of the Best Linear Predictor in a function space

Difficulty: The associated linear operator is, in general, NOT continuous
H: real separable Hilbert space with norm $\| . \|$ and scalar product $\langle . , . \rangle$

L: space of continuous linear operators from H to H with its usual norm $\| . \|_L$

$L^2_H = L^2_H(\Omega, \mathcal{A}, P)$: Hilbert space of (classes of) random variables defined on the probability space (Ω, \mathcal{A}, P) and with values in (H, B_H), scalar product

$$[X, Y] = E\langle X, Y \rangle ; X, Y \in L^2_H.$$

In the following all the random variables are supposed to be centered.
H : real separable Hilbert space with norm $\| \cdot \|$ and scalar product $\langle \cdot , \cdot \rangle$

$L : $ space of continuous linear operators from H to H with its usual norm $\| \cdot \|_L$

$L^2_H = L^2_H (\Omega, \mathcal{A}, P) : $ Hilbert space of (classes of) random variables defined on the probability space (Ω, \mathcal{A}, P) and with values in (H, \mathcal{B}_H), scalar product

$$[X, Y] = E \langle X, Y \rangle ; \ X, Y \in L^2_H.$$

In the following all the random variables are supposed to be centered.
A linear subspace \mathcal{G} of L^2_H is said to be **linearly closed (LCS)** if \mathcal{G} is closed in L^2_H and $X \in \mathcal{G}, l \in L$ implies $l(X) \in \mathcal{G}$.

X and Y in L^2_H are said to be **weakly orthogonal** $(X \perp Y)$ if $E \langle X, Y \rangle = 0$ and **strongly orthogonal** if $C_{X,Y} = 0$ where

$$C_{X,Y}(x) = E(\langle X, x \rangle Y), \ x \in H$$

is the **cross-covariance operator of X and Y**.

Y weakly orthogonal to \mathcal{G} implies Y strongly orthogonal to \mathcal{G}.
A linear subspace G of L^2_H is said to be **linearly closed (LCS)** if G is closed in L^2_H and $X \in G, l \in L$ implies $l(X) \in G$.

X and Y in L^2_H are said to be **weakly orthogonal** ($X \perp Y$) if $E \langle X, Y \rangle = 0$ and **strongly orthogonal** if $C_{X,Y} = 0$ where

$$C_{X,Y}(x) = E(\langle X, x \rangle Y), \ x \in H$$

is the **cross-covariance operator of X and Y**.

Y weakly orthogonal to G implies Y strongly orthogonal to G.

Y weakly orthogonal to G implies Y strongly orthogonal to G.

Let μ be a Probability on (H, \mathcal{B}_H). An application λ is said to be a $\mu-$measurable linear transformation ($\mu-$MLT) if λ is measurable and linear on a linear space S such that $\mu(S) = 1$.

It is equivalent to say that there exists a sequence $(l_k, k \geq 1)$ in \mathcal{L} such that

$$l_k(x) \xrightarrow[k \to \infty]{} \lambda(x), \ x \in S.$$

(cf Mandelbaum (1984)).

λ is, in general, NOT continuous, example:

$$\lambda(x) = x'.$$

In the following λ always denotes a MLT.
Let μ be a Probability on (H, \mathcal{B}_H). An application λ is said to be a μ–measurable linear transformation (μ–MLT) if λ is measurable and linear on a linear space S such that $\mu(S) = 1$. It is equivalent to say that there exists a sequence $(l_k, k \geq 1)$ in L such that

$$l_k(x) \xrightarrow[k \to \infty]{} \lambda(x), \ x \in S.$$

(cf Mandelbaum (1984)).

λ is, in general, NOT continuous, example:

$$\lambda(x) = x'.$$

In the following λ always denotes a MLT.
Let μ be a Probability on (H, \mathcal{B}_H). An application λ is said to be a $\mu-$measurable linear transformation ($\mu-$MLT) if λ is measurable and linear on a linear space S such that $\mu(S) = 1$.

It is equivalent to say that there exists a sequence $(l_k, k \geq 1)$ in \mathcal{L} such that

$$l_k(x) \xrightarrow[k \to \infty]{} \lambda(x), \ x \in S.$$

(cf Mandelbaum (1984)).

λ is, in general, NOT continuous, example:

$$\lambda(x) = x'.$$

In the following λ always denotes a MLT.
In the gaussian case one has a more precise property:

Lemma

Let X be a H--valued gaussian random variable and let \mathcal{G}_X be the LCS generated by X. If λ is P_X -- MLT there exists $(l_k, k \geq 1)$ in \mathcal{L} such that

$$E \| l_k(X) - \lambda(X) \|^2 \xrightarrow{k \to \infty} 0,$$

it follows that $\lambda(X) \in \mathcal{G}_X$.
Measurable linear transformations

An example

\[H = L^2(\mathbb{R}), \ (h_j, j \geq 0) \] the orthonormal basis of Hermite functions, set

\[X = \sum_{j=0}^{\infty} \xi_j h_j \]

where the \(\xi_j \)'s are real independent and such that

\[P(\xi_j = -a_j) = P(\xi_j = a_j) = p_j, \ j \geq 1 \]

with \(p_j < \frac{1}{2}, \sum p_j < \infty \) and \(a_j > 0, \sum p_j a_j^2 < \infty \). Then \(P(X \in S) = 1 \)

where \(S \) is the linear space of polynomials with weight \(\exp(-\frac{t^2}{2}) \), \(t \in \mathbb{R} \) and if \(\lambda(x) = x' \) and \(l_k(x)(t) = \frac{x(t+1/k) - x(t)}{1/k}, \ t \in \mathbb{R}, \ k \geq 1 \), then

\[2k \| l_k(x) - \lambda(x) \| \xrightarrow{k \to \infty} \| \lambda^2(x) \|, \ x \in S. \]
Measurable linear transformations

An example

\[H = L^2(\mathbb{R}), \ (h_j, j \geq 0) \] the orthonormal basis of Hermite functions, set

\[X = \sum_{j=0}^{\infty} \xi_j h_j \]

where the \(\xi_j \)'s are real independent and such that

\[P(\xi_j = -a_j) = P(\xi_j = a_j) = p_j, \ j \geq 1 \]

with \(p_j < \frac{1}{2}, \ \sum_j p_j < \infty \) and \(a_j > 0, \ \sum_j p_j a_j^2 < \infty \). Then \(P(X \in S) = 1 \)

where \(S \) is the **linear space of polynomials** with weight \(\exp(-\frac{t^2}{2}) \), \(t \in \mathbb{R} \)

and if \(\lambda(x) = x' \) and \(l_k(x)(t) = \frac{x(t+1/k) - x(t)}{1/k} \), \(t \in \mathbb{R}, \ k \geq 1 \),

then

\[2k \| l_k(x) - \lambda(x) \| \xrightarrow{k \to \infty} \| \lambda^2(x) \|, \ x \in S. \]
The link between MLT and LCS appears in the following statement

Proposition

Let \(\mathcal{G}_X \) be the LCS generated by \(X \) and \(\Pi^X \) its orthogonal projector in \(L^2_H \). Then, for each \(Y \) in \(L^2_H \), there exists a \(P_X - MLT \) \(\lambda_0 \) such that

\[
\Pi^X(Y) = \lambda_0(X).
\]
The link between MLT and LCS appears in the following statement:

Proposition

Let G_X be the LCS generated by X and Π^X its orthogonal projector in L^2_H. Then, for each Y in L^2_H, there exists a P_X–MLT λ_0 such that

$$\Pi^X(Y) = \lambda_0(X).$$
The next proposition underscores a special case where λ_0 is **continuous**:

Proposition

The following statements are equivalent

a) There exists $\alpha \geq 0$ such that $\|C_{X,Y}(x)\| \leq \alpha \|C_X(x)\|$, $x \in H$,

b) There exists $l_0 \in \mathcal{L}$ such that $C_{X,Y} = l_0 C_X$,

c) $\Pi^X(Y) = l_0(X)$.
The next proposition underscores a special case where \(\lambda_0 \) is continuous:

Proposition

The following statements are equivalent

a) There exists \(\alpha \geq 0 \) such that \(\| C_{X,Y}(x) \| \leq \alpha \| C_X(x) \|, \ x \in H, \)

b) There exists \(l_0 \in \mathcal{L} \) such that \(C_{X,Y} = l_0 C_X, \)

c) \(\Pi^X(Y) = l_0(X). \)
Innovation of ARMAH processes

Innovation

A \textbf{white noise} is a sequence \((\varepsilon_n, n \in \mathbb{Z})\) of strongly orthogonal \(H\)–valued random variables such that \(E \|\varepsilon_n\|^2 = \sigma^2 > 0\) and \(E \varepsilon_n = 0, \, n \in \mathbb{Z}\).

A \textbf{weakly stationary process in} \(H\) satisfies

\[
C_{X_{n+h}, X_{m+h}} = C_{X_n, X_m}, \quad n, m, h \in \mathbb{Z}.
\]

\((\varepsilon_n, n \in \mathbb{Z})\) is the \textbf{innovation} of \((X_n, n \in \mathbb{Z})\) if

\[
X_{n+1}^* = X_n + \varepsilon_{n+1}, \quad n \in \mathbb{Z},
\]

where \(X_{n+1}^*\) is the best linear predictor of \(X_{n+1}\) given \(X_n, X_{n-1}, \ldots\)
A \textbf{white noise} is a sequence \((\varepsilon_n, n \in \mathbb{Z})\) of strongly orthogonal \(H\)–valued random variables such that \(E \|\varepsilon_n\|^2 = \sigma^2 > 0\) and \(E\varepsilon_n = 0, n \in \mathbb{Z}\).

A \textbf{weakly stationary process} \textbf{in} \(H\) satisfies

\[
C_{X_{n+h}, X_{m+h}} = C_{X_n, X_m}, n, m, h \in \mathbb{Z}.
\]

\((\varepsilon_n, n \in \mathbb{Z})\) is the \textbf{innovation} of \((X_n, n \in \mathbb{Z})\) if

\[
X_{n+1}^* = X_n + \varepsilon_{n+1}, n \in \mathbb{Z},
\]

where \(X_{n+1}^*\) is the best linear predictor of \(X_{n+1}\) given \(X_n, X_{n-1}, \ldots\).
A \textbf{white noise} is a sequence \((\varepsilon_n, n \in \mathbb{Z})\) of strongly orthogonal \(H\)-valued random variables such that \(E \|\varepsilon_n\|^2 = \sigma^2 > 0\) and \(E\varepsilon_n = 0, \ n \in \mathbb{Z}\).

A \textbf{weakly stationary process} in \(H\) satisfies

\[C_{X_{n+h}, X_{m+h}} = C_{X_n, X_m}, \ n, m, h \in \mathbb{Z}. \]

\((\varepsilon_n, n \in \mathbb{Z})\) is the \textbf{innovation} of \((X_n, n \in \mathbb{Z})\) if

\[X_{n+1}^* = X_n + \varepsilon_{n+1}, \ n \in \mathbb{Z}, \]

where \(X_{n+1}^*\) is the best linear predictor of \(X_{n+1}\) given \(X_n, X_{n-1}, \ldots\)
Set \mathcal{M}_n be the LCS generated by X_n, X_{n-1}, \ldots. A stationary process is an autoregressive process of order 1 in $H(\text{ARH}(1))$ if

$$\Pi^{\mathcal{M}_{n-1}}(X_n) = \Pi^G_{X_{n-1}}(X_n)$$

Hence

$$X_n = \lambda_n(X_{n-1}) + \varepsilon_n, \ n \in \mathbb{Z},$$

where λ_n is MLT and (ε_n) is the innovation.
Set \mathcal{M}_n be the LCS generated by X_n, X_{n-1}, \ldots. A stationary process is an autoregressive process of order 1 in H (ARH(1)) if

$$\Pi^{\mathcal{M}_{n-1}}(X_n) = \Pi^{\mathcal{G}X_{n-1}}(X_n)$$

Hence

$$X_n = \lambda_n(X_{n-1}) + \varepsilon_n, \quad n \in \mathbb{Z},$$

where λ_n is MLT and (ε_n) is the innovation.
Proposition

Suppose that the equation

\[X_n = \lambda (X_{n-1}) + \epsilon_n, \quad n \in \mathbb{Z} \]

(1)

has a solution such that \(\lambda : S \longrightarrow S \) is \(P_{X_n} - \text{MLT} \) for all \(n \), \(\lambda^j (X_{n-j}) \in \mathcal{G}_{X_{n-j}} \) and \(\lambda^j (\epsilon_{n-j}) \in \mathcal{G}_{\epsilon_{n-j}}, j \geq 1 \), then if

\[
\frac{1}{k} \sum_{j=1}^{k} \mathbb{E} \left\| \lambda^j (X_{n-j}) \right\|^2 \xrightarrow[k \to \infty]{} 0, \quad n \in \mathbb{Z}
\]

(1) has a unique stationary solution given by

\[X_n = \lim_{k \to \infty} \left(L^2_H \right)^k \sum_{j=0}^{k-1} \left(1 - \frac{j}{k} \right) \lambda^j (\epsilon_{n-j}), \quad n \in \mathbb{Z} \]

and \((\epsilon_n)\) is the innovation of \((X_n)\).
Proposition

Suppose that the equation

\[X_n = \lambda (X_{n-1}) + \varepsilon_n, \quad n \in \mathbb{Z} \tag{1} \]

has a solution such that \(\lambda : S \rightarrow S \) is \(P_{X_n} - \text{MLT} \) for all \(n \), \(\lambda^j(X_{n-j}) \in \mathcal{G}X_{n-j} \) and \(\lambda^j(\varepsilon_{n-j}) \in \mathcal{G}\varepsilon_{n-j}, j \geq 1 \), then if

\[\frac{1}{k} \sum_{j=1}^{k} E \left\| \lambda^j(X_{n-j}) \right\|^2 \xrightarrow{k \to \infty} 0, \quad n \in \mathbb{Z} \]

(1) has a unique stationary solution given by

\[X_n = \lim_{k \to \infty} (L_H^2) \sum_{j=0}^{k-1} \left(1 - \frac{j}{k} \right) \lambda^j(\varepsilon_{n-j}), \quad n \in \mathbb{Z} \]

and \((\varepsilon_n)\) is the innovation of \((X_n)\).
Proposition

Suppose that the equation

\[X_n = \lambda(X_{n-1}) + \varepsilon_n, \quad n \in \mathbb{Z} \quad (1) \]

has a solution such that \(\lambda : S \rightarrow S \) is \(P_{X_n} - \text{MLT} \) for all \(n \), \(\lambda^j(X_{n-j}) \in \mathcal{G}_{X_{n-j}} \) and \(\lambda^j(\varepsilon_{n-j}) \in \mathcal{G}_{\varepsilon_{n-j}}, j \geq 1 \), then if

\[
\frac{1}{k} \sum_{j=1}^{k} E \left\| \lambda^j(X_{n-j}) \right\|^2 \xrightarrow[k \to \infty]{} 0, \quad n \in \mathbb{Z}
\]

(1) has a unique stationary solution given by

\[X_n = \lim_{k \to \infty} \left(L^2_H \right)^{k-1} \sum_{j=0}^{k-1} \left(1 - \frac{j}{k} \right) \lambda^j(\varepsilon_{n-j}), \quad n \in \mathbb{Z} \]

and \((\varepsilon_n) \) is the innovation of \((X_n) \).
Proof

The proof is based on the relation

\[X_n = \sum_{j=0}^{k-1} \left(1 - \frac{j}{k} \right) \lambda^j (\varepsilon_{n-j}) + \frac{1}{k} \sum_{j=1}^{k} \lambda^j (X_{n-j}). \]

The above condition is strictly weaker than the classical conditions like:

“\(\lambda \) is continuous and there exists an integer \(j_0 \) such that \(\| \lambda^j \|_\mathcal{L} < 1, \ j \geq j_0. \)” (cf Bosq-Blanke 2007)
Proof

The proof is based on the relation

\[X_n = \sum_{j=0}^{k-1} \left(1 - \frac{j}{k} \right) \lambda^j (\epsilon_{n-j}) + \frac{1}{k} \sum_{j=1}^{k} \lambda^j (X_{n-j}). \]

The above condition is strictly weaker than the classical conditions like:

"\(\lambda \) is continuous and there exists an integer \(j_0 \) such that
\[\| \lambda^j \|_\mathcal{L} < 1, \ j \geq j_0. \]" (cf Bosq-Blanke 2007)
Proposition

Suppose that \((X_n)\) is defined by

\[X_n = \varepsilon_n - \lambda(\varepsilon_{n-1}), \quad n \in \mathbb{Z}. \]

where \(\lambda : H_1 \rightarrow H_1\) is \(P_{\varepsilon_n} - \text{MLT}\) for all \(n\), with \(\lambda^j(X_{n-j}) \in \mathcal{G}_{X_{n-j}}, \lambda^j(\varepsilon_{n-j}) \in \mathcal{G}_{\varepsilon_{n-j}}, \quad j \geq 1, \quad n \in \mathbb{Z}\), then, if

\[\frac{1}{k^2} \sum_{j=1}^{k} E \| \lambda^j(\varepsilon_{n-j}) \|^2 \xrightarrow[k \rightarrow \infty]{} 0, \]

\((\varepsilon_n)\) is the innovation of \((X_n)\) and

\[\varepsilon_n = \lim_{k \rightarrow \infty} \left(L_H^2 \right) \sum_{j=0}^{k-1} (1 - \frac{i}{k}) \lambda^j(X_{n-j}). \]
The condition is weak. In particular if λ is continuous and such that

$$\|\lambda^j\|_{\mathcal{L}} \leq 1, \ j \geq 1$$

the above Proposition holds. A simple example is

$$X_n = \varepsilon_n - \Pi^G (\varepsilon_{n-1}), \ n \in \mathbb{Z}$$

where G is a closed subspace of H and Π^G its orthogonal projector.

If the MA is real, it corresponds to roots of modulus 1.
The condition is weak. In particular if λ is continuous and such that

$$\|\lambda^j\|_\mathcal{L} \leq 1, \ j \geq 1$$

the above Proposition holds. A simple example is

$$X_n = \varepsilon_n - \Pi^G (\varepsilon_{n-1}), \ n \in \mathbb{Z}$$

where G is a closed subspace of H and Π^G its orthogonal projector.

If the MA is real, it corresponds to roots of modulus 1.
In $L^2[0, 1]$ consider the white noise

$$
\varepsilon_n(t) = \sum_{i=0}^{\infty} \xi_{ni} \frac{t^i}{i!}, \; t \in [0, 1], \; n \in \mathbb{Z}
$$

where (ξ_{ni}) is a sequence of real independent random variables such that, for all n, $\xi_{ni} \sim \mathcal{N}(0, \sigma_i^2)$ where $0 < \sum_{i=1}^{\infty} \sigma_i^2 < \infty$. Set

$$
X_n(t) = \varepsilon_n(t) - \varepsilon_{n-1}(t)
$$

then (ε_n) is the innovation.
Example

In $L^2[0, 1]$ consider the white noise

$$
\varepsilon_n(t) = \sum_{i=0}^{\infty} \xi_{ni} \frac{t^i}{i!}, \quad t \in [0, 1], \quad n \in \mathbb{Z}
$$

where (ξ_{ni}) is a sequence of real independent random variables such that, for all n, $\xi_{ni} \sim \mathcal{N}(0, \sigma_i^2)$ where $0 < \sum_{i=1}^{\infty} \sigma_i^2 < \infty$. Set

$$
X_n(t) = \varepsilon_n(t) - \varepsilon_{n-1}'(t)
$$

then (ε_n) is the innovation.
The mixed case

Proposition

Consider the ARMAH (1,1) process defined as

$$\varepsilon_n - l(\varepsilon_{n-1}) = X_n - \rho(X_{n-1}), \ n \in \mathbb{Z}$$

where \((\varepsilon_n)\) is a H-white noise and \(l\) and \(\rho\) belong to \(\mathcal{L}\); suppose that

$$\frac{1}{k^2} \sum_{j=0}^{k} \|j\|^2_{\mathcal{L}} \xrightarrow{k \to \infty} 0$$

and that

$$\frac{1}{k} \sum_{j=0}^{k} \|\rho^j\|^2_{\mathcal{L}} \xrightarrow{k \to \infty} 0$$

then, if that equation has a stationary solution, it is given by

$$X_n = \lim_{k \to \infty} \left(L_{H}^2 \right) \sum_{j=0}^{k-1} \left(1 - \frac{j}{k} \right) \rho^j(\varepsilon_{n-j} - l(\varepsilon_{n-j-1}), \ n \in \mathbb{Z}$$

and \((\varepsilon_n)\) is the innovation of \((X_n)\).
Example

Consider the Hilbert space $H = L^2([0, 1], \mathcal{B}_{[0,1]}, \mu)$ where μ is the sum of Lebesgue measure and Dirac measure at the point 1. Set

$$\epsilon_n(t) = \int_{n}^{n+t} \exp(-\theta(n+t-s)) dW(s), \quad t \in [0, 1], \quad n \in \mathbb{Z}, \quad (\theta > 0),$$

where W is a bilateral standard Wiener process. Put $l(x)(t) = x(t)$, and $\rho(x)(t) = \exp(-\theta t). x(1)$ $t \in [0, 1], \quad x \in H$. Then the process

$$X_n(t) = \exp(-\theta(n+t)) \int_{-\infty}^{n+t} \exp(\theta s) dW(s)$$

$$- \exp(-\theta(n-1+t)) \int_{-\infty}^{n-1+t} \exp(\theta s) dW(s), \quad t \in [0, 1], \quad n \in \mathbb{Z}$$

is a stationary ARMAH (1,1).
Compound Ornstein-Uhlenbeck process

Example

Consider the Hilbert space $H = L^2([0, 1], \mathcal{B}_{[0,1]}, \mu)$ where μ is the sum of Lebesgue measure and Dirac measure at the point 1. Set

$$\varepsilon_n(t) = \int_{n}^{n+t} \exp(-\theta(n + t - s)) dW(s), \quad t \in [0, 1], \ n \in \mathbb{Z}, \ (\theta > 0),$$

where W is a bilateral standard Wiener process. Put $l(x)(t) = x(t)$, and $\rho(x)(t) = \exp(-\theta t). x(1)$ $t \in [0, 1], \ x \in H$. Then the process

$$X_n(t) = \exp(-(\theta(n + t))) \int_{-\infty}^{n+t} \exp(\theta s) dW(s)$$

$$- \exp(-\theta(n - 1 + t)) \int_{-\infty}^{n-1+t} \exp(\theta s) dW(s), \quad t \in [0, 1], \ n \in \mathbb{Z}$$

is a stationary ARMAH (1,1).
Consider the model

\[X_n = r(Y_n) + \varepsilon_n, \quad n \geq 1 \]

\[Y_n = \rho(Y_{n-1}) + \eta_n, \quad n \geq 1 \]

where \((X_n)\) and \((Y_n)\) are \(H\)-valued stationary processes and where \((\varepsilon_n)\) and \((\eta_n)\) are two strongly orthogonal white noises such that \(C_{\varepsilon_n, Y_n} = C_{\eta_n, Y_{n-1}} = 0\); \(\rho\) and \(r\) belong to \(\mathcal{L}\). Then, if \(r\rho = \rho r\), \((X_n)\) is an ARMAH \((1,1)\).

Other examples of Kalman-Bucy filter in \(H\) appear in Ruiz-Medina et al in a spatial framework.
Example
Consider the model

\[X_n = r(Y_n) + \varepsilon_n, \ n \geq 1 \]

\[Y_n = \rho(Y_{n-1}) + \eta_n, \ n \geq 1 \]

where \((X_n)\) and \((Y_n)\) are \(H\)–valued stationary processes and where \((\varepsilon_n)\) and \((\eta_n)\) are two strongly orthogonal white noises such that \(C_{\varepsilon_n, Y_n} = C_{\eta_n, Y_{n-1}} = 0\); \(\rho\) and \(r\) belong to \(\mathcal{L}\). Then, if \(r\rho = \rho r\), \((X_n)\) is an ARMAH \((1,1)\).

Other examples of Kalman-Bucy filter in \(H\) appear in Ruiz-Medina et al in a spatial framework.
Proposition

Consider a MAH(2) admitting the decomposition

\[X_n = \varepsilon_n - (\alpha + \beta)(\varepsilon_{n-1}) + \beta \alpha (\varepsilon_{n-2}), \quad n \in \mathbb{Z} \]

where \((\varepsilon_n)\) is a white noise and \(\alpha, \beta \in \mathcal{L}\) and suppose that

\[\frac{1}{k^2} \sum_{j=0}^{k} \| \alpha^j \|_\mathcal{L}^2 \xrightarrow{k \to \infty} 0 \]

and

\[\frac{1}{k^2} \sum_{j=0}^{k} \| \beta^j \|_\mathcal{L}^2 \xrightarrow{k \to \infty} 0 \]

then \((\varepsilon_n)\) is the innovation of \((X_n)\).
Constructing the innovation

What about the case where the noise associated with the process is NOT the innovation?
The case of a MAH(1)

Proposition

Consider the MAH(1) given by

\[X_n = e_n - l(e_{n-1}), \quad n \in \mathbb{Z} \]

where \(l \in \mathcal{L} \) and \((e_n)\) is a \(H-\) white noise. We suppose that \(l \) is symmetric, invertible, such that \(\| (l^{-1})^{j_0} \|_\mathcal{L} < 1 \) for some \(j_0 \geq 1 \). Moreover \(l \) and \(C_{e_0} \) commute.

Then, the innovation of \((X_n)\) is defined as

\[\varepsilon_n = (I - l^{-1}B)^{-1}(I - lB)e_n \]

where \(B \) is the backward operator \((B(x_n) = x_{n-1})\), convergence takes place in \(L^2_H \), and

\[X_n = \varepsilon_n - l^{-1}(\varepsilon_{n-1}), \quad n \in \mathbb{Z}. \]

In addition one has

\[C_{\varepsilon_0} = l^2 C_{e_0}. \]
Example

Suppose that

\[l = \sum_{i=1}^{\infty} a_i v_i \otimes v_i \]

where \((v_i)\) is an orthonormal system in \(H\) and \(1 < |a_1| \leq |a_2| \leq \ldots \leq a < \infty\); and that

\[C_{e_0} = \sum_{i=1}^{\infty} c_i v_i \otimes v_i \]

then the above Proposition holds.
The case of an ARH(1)

Proposition

Consider the equation

\[X_n = r(X_{n-1}) + \eta_n \quad n \in \mathbb{Z} \]

where \((\eta_n)\) is a \(H-\)white noise and \(r \in \mathcal{L}\), and suppose that

\[\exists r^{-1} : \frac{1}{k} \sum_{j=1}^{k} \| r^{-j} \|_{\mathcal{L}}^2 \xrightarrow[k \to \infty]{\mathcal{L}} 0, \]

then it has a stationary solution given by

\[X_n = - \lim_{k \to \infty} (L_H^2) \sum_{j=1}^{k} \left(1 - \frac{j-1}{k}\right) r^{-j}(\eta_{n+j}), \quad n \in \mathbb{Z}. \]

If, in addition, \(r^{-1}C_XX_0\) is symmetric and \(C_X(\text{Is} - (r^*)^{-2}) \neq 0\), then the innovation of \((X_n)\) is

\[\varepsilon_n = X_n - r^{-1}(X_{n-1}) \quad n \in \mathbb{Z}. \]
Starting from the best predictor

Principle: Given the best linear predictor (BLP) find the associated model.

Choice: **Extended exponential smoothing** in H:

$$X^*_n + 1 = \alpha \left(\sum_{j=0}^{\infty} \beta^j (X_{n-j}) \right),$$

where α and β belong to \mathcal{L} and $\alpha \beta = \beta \alpha$. Then one has

$$X^*_n + 1 = \alpha(X_n) + \beta(X^*_n).$$
Proposition

Suppose that $\|\beta^j\|_L < 1$ and $\| (\alpha + \beta)^j \|_L < 1$ for some integer j_0, and that $\alpha \neq 0$. If (X_n) is a regular zero-mean stationary process with innovation (ε_n) and such that the BLP is

$$X_{n+1}^\ast = \alpha \left(\sum_{j=0}^{\infty} \beta^j (X_{n-j}) \right)$$

where $\alpha \beta = \beta \alpha$, then (X_n) is an ARMAH (1,1):

$$X_n - (\alpha + \beta) (X_{n-1}) = \varepsilon_n - \beta (\varepsilon_{n-1}), \quad (2)$$

Conversely, if (X_n) satisfies 2, then X_{n+1}^\ast is BLP for every n.
Computing linear filters in Hilbert spaces (X, Y) in $G \times H$ real separable Hilbert spaces with spectral decompositions:

$$C_X = \sum_{i \in I} \alpha_i v_i \otimes v_i \ (\alpha_i > 0, \sum_{i \in I} \alpha_i < \infty)$$

and

$$C_Y = \sum_{j \in J} \beta_j w_j \otimes w_j \ (\beta_j > 0, \sum_{j \in J} \beta_j < \infty)$$

I and J are finite or infinite. Let $\mathcal{L}(G, H)$ be the space of continuous linear operators from G to H. Set

$$\mathcal{F}_X = sp\{l(X), l \in \mathcal{L}(G, H)\}$$

where the closure is taken in $L^2_H = L^2_H(\Omega, \mathcal{A}, P)$.
Computing linear filters in $G \times H$ real separable Hilbert spaces with spectral decompositions:

$$C_X = \sum_{i \in I} \alpha_i v_i \otimes v_i \ (\alpha_i > 0, \sum_{i \in I} \alpha_i < \infty)$$

and

$$C_Y = \sum_{j \in J} \beta_j w_j \otimes w_j \ (\beta_j > 0, \sum_{j \in J} \beta_j < \infty)$$

I and J are finite or infinite. Let $\mathcal{L}(G, H)$ be the space of continuous linear operators from G to H. Set

$$\mathcal{F}_X = sp\{l(X), l \in \mathcal{L}(G, H)\}$$

where the closure is taken in $L^2_H = L^2_H(\Omega, \mathcal{A}, P)$.
Let \(\mathcal{L}(G,H) \) be the space of continuous linear operators from \(G \) to \(H \). Set

\[
\mathcal{F}_X = \text{sp} \{ l(X), l \in \mathcal{L}(G,H) \}
\]

where the closure is taken in \(L^2_H = L^2_H(\Omega, \mathcal{A}, P) \).

The best linear predictor of \(Y \) given \(X \) is the orthogonal projection of \(Y \) on \(\mathcal{F}_X \).
Let \(\mathcal{L}(G, H) \) be the space of continuous linear operators from \(G \) to \(H \). Set

\[
\mathcal{F}_X = sp \{ l(X), l \in \mathcal{L}(G, H) \}
\]

where the closure is taken in \(L^2_H = L^2_H(\Omega, \mathcal{A}, P) \).

The best linear predictor of \(Y \) given \(X \) is the orthogonal projection of \(Y \) on \(\mathcal{F}_X \).
Proposition

The best linear predictor (BLP) of Y given X is

$$
\lambda_0(X) = \sum_{i \in I, j \in J} \gamma_{ij} (v_i \otimes w_j)(X) \ (L_H^2)
$$

where

$$
\gamma_{ij} = \frac{E(\langle X, v_i \rangle_G \langle Y, w_j \rangle_H)}{E \langle X, v_i \rangle_G^2}, \ i \in I, j \in J
$$
The proof uses the fact that

\[U_{ij} = \frac{\langle X, v_i \rangle_G}{\sqrt{\alpha_i}} \cdot w_j \quad i \in I, j \in J, \]

is an orthonormal system in \(L^2_H \).
Continuity

\(\lambda_0 \) is a \(P_X \)-MLT. Continuity of \(\lambda_0 \) appears in the next statement.

Proposition

If there exists \(l_0 \in \mathcal{L}(G,H) \) such that

\[
C_X, Y = l_0 C_X,
\]

then the best linear predictor takes the form

\[
l_0(X) = \sum_{i \in I} \frac{\langle X, v_i \rangle_G}{\alpha_i} C_X, Y(v_i)
\]
Converse

Proposition

If there exists \(l_0 : G \rightarrow H \) such that

\[
l_0(x) = \sum_{i=1}^{\infty} \frac{\langle x, v_i \rangle_G}{\alpha_i} \, C_{X,Y}(v_i), \quad x \in H, \ (H)
\]

then \(l_0 \in \mathcal{L}(G,H) \) and \(C_{X,Y} = l_0 \, C_X \).
The gaussian case

In the gaussian case a similar result can be obtained without continuity assumption:

Proposition

If $G = H$ and the vector (X, Y) is gaussian then the conditional expectation $E(Y \mid X)$ and the BLP coincide and have the form

$$E(Y \mid X) = \lambda_0(X) = \sum_{i \in I} \frac{\langle X, v_i \rangle_G}{\alpha_i} C_{X, Y}(v_i)$$
The gaussian case

In the gaussian case a similar result can be obtained without continuity assumption:

Proposition

If $G = H$ and the vector (X, Y) is gaussian then the conditional expectation $E(Y | X)$ and the BLP coincide and have the form

$$E(Y | X) = \lambda_0(X) = \sum_{i \in I} \frac{\langle X, v_i \rangle}{\alpha_i} C_{X,Y}(v_i)$$
Proof

The proof uses the fact that the sequence

\[
E(\langle Y, y \rangle_H | (\langle X, v_1 \rangle_G, ..., \langle X, v_m \rangle_G)) = \sum_{i=1}^{m} \frac{E(\langle X, v_i \rangle_G \langle Y, y \rangle_H)}{E(\langle X, v_i \rangle_G^2)} \langle X, v_i \rangle_G,
\]

\[m \geq 1,\] is a martingale in \(L^2_H.\)
The final statement is useful for computing a BLP

Proposition

The LCS \mathcal{G}_X of L^2_G has the orthonormal basis

$$\mathcal{B} = \left\{ \frac{\langle X, v_i \rangle_G}{\alpha_i^{1/2}} v_j, \; i \in I, \; j \in I \right\} \cup \left\{ \frac{\langle X, v_i \rangle_G}{\alpha_i^{1/2}} u_j, \; i \in I, \; j \in J' \right\}$$

where

$$C_X = \sum_{i \in I} \alpha_i v_i \otimes v_i \; (\alpha_i > 0, \sum_{i \in I} \alpha_i < \infty)$$

and $(u_j, j \in J')$ is an orthonormal basis of the orthogonal complement of the closed subspace of G generated by $(v_i, i \in I)$.

(cf Bosq-Mourid (2012)).
Basis of a LCS

The final statement is useful for computing a BLP

Proposition

The LCS \mathcal{G}_X of L^2_G has the orthonormal basis

$$\mathcal{B} = \left\{ \frac{\langle X, v_i \rangle_G}{\alpha_i^{1/2}} v_j, i \in I, j \in I \right\} \cup \left\{ \frac{\langle X, v_i \rangle_G}{\alpha_i^{1/2}} u_j, i \in I, j \in J' \right\}$$

where

$$C_X = \sum_{i \in I} \alpha_i v_i \otimes v_i \ (\alpha_i > 0, \sum_{i \in I} \alpha_i < \infty)$$

and $(u_j, j \in J')$ is an orthonormal basis of the orthogonal complement of the closed subspace of G generated by $(v_i, i \in I)$.

(cf Bosq-Mourid (2012)).
Consider the model

\[X = r(Y) + \varepsilon \]

with \(r \in \mathcal{L}(H, G) \) and \(C_Y, \varepsilon = 0 \), where only \(X \) is observed. Then

\[C_{X, Y} = C_Y r^* \]

hence

\[\lambda_0(X) = \sum_{i,j} \frac{\beta_j}{\alpha_i} \langle v_i, r(w_j) \rangle_H \langle X, v_i \rangle_G w_j. \]
Modification of notation: \((X, \Theta)\) gaussian in \(G \times H\), \(\tau\) prior distribution for \(\Theta\), then the Bayesian estimator of \(\theta\) is

\[
E(\Theta | X) = \sum_{i,j} \frac{E(\langle X, v_i \rangle_G \langle \Theta, w_j \rangle_H)}{E(\langle X, v_i \rangle_G^2)} \langle X, v_i \rangle_G w_j
\]

- Existence of density not required,
- \(G\) (resp. \(H\)) may be finite or infinite dimensional.
Modification of notation: \((X, \Theta)\) gaussian in \(G \times H\), \(\tau\) prior distribution for \(\Theta\), then the Bayesian estimator of \(\theta\) is

\[
E(\Theta | X) = \sum_{i,j} \frac{E(\langle X, v_i \rangle_G \langle \Theta, w_j \rangle_H)}{E(\langle X, v_i \rangle_G^2)} \langle X, v_i \rangle_G w_j
\]

- Existence of density not required,
- \(G\) (resp. \(H\)) may be finite or infinite dimensional.
Modification of notation: \((X, \Theta)\) gaussian in \(G \times H\), \(\tau\) prior distribution for \(\Theta\), then the Bayesian estimator of \(\theta\) is

\[
E(\Theta | X) = \sum_{i,j} \frac{E(\langle X, v_i \rangle_G \langle \Theta, w_j \rangle_H)}{E(\langle X, v_i \rangle_G^2)} \langle X, v_i \rangle_G w_j
\]

- Existence of density not required,
- \(G\) (resp. \(H\)) may be finite or infinite dimensional.
Tensorial product

Assume that \((X, Y)\) is gaussian and such that

\[E(Y|X) = l_0(X) \]

where \(l_0 \in \mathcal{L}(G, H)\). Thus

\[Y = l_0(X) + \eta \]

where \(\eta\) is strongly orthogonal to \(X\). Then the tensorial product \(Y \otimes Y\) has conditional expectation

\[E(Y \otimes Y|X) = l_0(X) \otimes l_0(X) + C_\eta, \]

with

\[l_0(X) = \sum_{i \in I} \frac{\langle X, v_i \rangle_G}{\alpha_i} C_{X, Y}(v_i). \]
Consider a sample \((X_i, Y_i), 1 \leq i \leq n\) and suppose that \(X_{n+1}\) is observed. In order to “estimate” \(\lambda_0(X_{n+1})\) the following steps are necessary

- Compute the empirical eigenvectors and eigenvalues from

\[
C_{n,X} = \frac{1}{n} \sum_{i=1}^{n} X_i \otimes X_i
\]

and

\[
C_{n,Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \otimes Y_i
\]

- Choose a double truncation index
- Find a doctoral student for the calculations.
Consider a sample \((X_i, Y_i), 1 \leq i \leq n\) and suppose that \(X_{n+1}\) is observed. In order to “estimate” \(\lambda_0(X_{n+1})\) the following steps are necessary:

- Compute the empirical eigenvectors and eigenvalues from

\[
C_{n,X} = \frac{1}{n} \sum_{i=1}^{n} X_i \otimes X_i
\]

and

\[
C_{n,Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \otimes Y_i
\]

- Choose a double truncation index
- Find a doctoral student for the calculations.
Consider a sample \((X_i, Y_i), 1 \leq i \leq n\) and suppose that \(X_{n+1}\) is observed. In order to “estimate” \(\lambda_0(X_{n+1})\) the following steps are necessary:

- Compute the empirical eigenvectors and eigenvalues from

\[
C_{n,X} = \frac{1}{n} \sum_{i=1}^{n} X_i \otimes X_i
\]

and

\[
C_{n,Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \otimes Y_i
\]

- Choose a double truncation index

- Find a doctoral student for the calculations.
Consider a sample \((X_i, Y_i), 1 \leq i \leq n\) and suppose that \(X_{n+1}\) is observed. In order to “estimate” \(\lambda_0(X_{n+1})\) the following steps are necessary:

- Compute the empirical eigenvectors and eigenvalues from
 \[
 C_{n,X} = \frac{1}{n} \sum_{i=1}^{n} X_i \otimes X_i
 \]
 and
 \[
 C_{n,Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \otimes Y_i
 \]

- Choose a double truncation index
- Find a doctoral student for the calculations.
Mandelbaum, A.
Linear estimators and measurable linear transformations on a Hilbert space.

Ruiz-Medina, M.D., R. Salmerón, Angulo, J.M.
Kalman filtering from PoP-based diagonalization of ARH(1).

Hallin, M.
Talk, UPMC, 2012.

Cuevas, A.
A partial overview of the theory of statistics with functional data.
References II

Bosq, D. and Blanke, D.
Inference and prediction in large dimensions.

Bosq, D.
General linear processes in Hilbert spaces and prediction.

Bosq, D.
Tensorial products of functional ARMA processes.

Bosq, D.
Constructing functional linear filters.

Bosq, D. and Mourid, T.