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Electricity demand data

Some salient features
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(c) Daily pattern. (d) Demand (in Gw/h) as a function of
temperature (in °C)
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Electricity demand forecast

term electricity demand forecast in literature

® Time series analysis: SARIMA (X), Kalman filter [Dordonnat et al. (2009)]
@ Machine learning. [Devaine et al. (2010)]
@ Similarity search based methods. [Poggi (1994), Antoniadis et al. (2006)]

@ Regression: EDF modelisation scheme [Bruhns et al. (2005)] , GAM [Pierrot and
Goude (2011)], Bayesian approach [Launay , Philippe and Lamarche (2012)]
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Electricity demand forecast

® Time series analysis: SARIMA(X), Kalman filter [Dordonnat et al. (2009)]
@ Machine learning. [Devaine et al. (2010)]

@ Similarity search based methods. [Poggi (1994), Antoniadis et al. (2006)]

°

Regression: EDF modelisation scheme [Bruhns et al. (2005)] , GAM [Pierrot and
Goude (2011)], Bayesian approach [Launay , Philippe and Lamarche (2012)]

New challenges

@ Market liberalization: may produce variations on clients’ perimeter that
risk to induce nonstationarities on the signal.

@ Development of smart grids and smart meters.

But, almost all the models rely on a monoscale representation of the data
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The prediction problem
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Functional time series

FD as slices of a continuous process [Bosq, (1990)]

The prediction problem

@ Suppose one observes a square integrable continuous-time stochastic
process X = (X(t), t € R) over the interval [0, T], T > 0;

© We want to predict X all over the segment [T, T +6],6 >0
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Functional time series prediction

Functional time series

FD as slices of a continuous process [Bosq, (1990)]

The prediction problem
@ Suppose one observes a square integrable continuous-time stochastic
process X = (X(t), t € R) over the interval [0, T], T > 0;
© We want to predict X all over the segment [T, T +6],6 >0
@ Divide the interval into n subintervals of equal size §.

@ Consider the functional-valued discrete time stochastic process
Z = (Zk, k € N), where N = {1,2,...}, defined by

Zi(t) = X(t + (k — 1)9)
ke N Vtelo,9)
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Functional time series

FD as slices of a continuous process [Bosq, (1990)]

The prediction problem
@ Suppose one observes a square integrable continuous-time stochastic
process X = (X(t), t € R) over the interval [0, T], T > 0;
© We want to predict X all over the segment [T, T +6],6 >0
@ Divide the interval into n subintervals of equal size §.

@ Consider the functional-valued discrete time stochastic process
Z = (Zk, k € N), where N = {1,2,...}, defined by

Zi(t) = X(t + (k — 1)9)
ke N Vtelo,9)

If X contents a §—seasonal component, Z is particularly fruitful.
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Prediction of functional time series

Let (Zx, k € Z) be a stationary sequence of H-valued r.v. Given Z, ...
want to predict the future value of Z,;1.
@ A predictor of Z,+1 using 21,22, ...,2Z, is

Zni1 = E[Zn41| 20, Zn—a, - . ., Z4).
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Functional time series

Prediction of functional time series

Let (Zk, k € Z) be a stationary sequence of H-valued r.v. Given Zi,...,Z, we
want to predict the future value of Z,;1.

@ A predictor of Z,+1 using 21,22, ...,2Z, is

Zni1 = E[Zn41| 20, Zn—a, - . ., Z4).

v
Autoregressive Hilbertian process of order 1

The ARH(1) centred process states that at each k,

Zi = p(Zi—1) + € (1)

where p is a compact linear operator and {ex }«cz is an H—valued strong white
noise.

Under mild conditions, equation (1) has a unique solution which is a strictly
stationary process with innovation {ex}«ez. [Bosq, (1991)]

When Z is a zero-mean ARH(1) process, the best predictor of Z,11 given

{Zl7 ceey Zn_l} is:

Z,-,+1 = p(Zn)
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The Kernel-+Wavelet+Functional (KWF) model (Pigiitem eligeridin

Let us predict Saturday 10 September 2005

We use Antoniadis et al., (2006) prediction method with corrections to cope
with non stationarity.

@ Use the last observed segment (n = 9/Sept/2005) to look for similar
segments in past.

Construct a similarity index SimilIndex (using a kernel).

Prediction can be written as

n—1
@n+1(t) = Z Simillndexm,» X Loadmi1(t)

m=1

First difference correction of the approximation part.

(]

Use of groups to anticipate calendar transitions.
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date SimilIndex
2004-09-10 0.455
2003-09-05 0.141
2002-09-06 0.083
2004-09-03 0.070
2003-09-19 0.068
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2000-09-15 0.019
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Wavelets to cope with FD
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Discrete Wavelet Transform

If z € [>([0,1]) we can write it as

200 —1 oo 2-1
2(t) =) Goudiu(t)+ D Y dikthiu(t),
k=0 = =0

where ¢« =< g, ¢k >, dix =< g, pj.k > are the scale coefficients and
wavelet coefficients respectively, and the functions ¢ et ¢ are associated to a
orthogonal MRA of L,([0,1]).




The Kernel4+-Wavelet+Functional (KWF) model

Approximation and details

@ In practice, we don't dispose of the whole trajectory but only with a
(possibly noisy) sampling at 27 points, for some integer J.

@ Each approximated segment Z; ;(t) is broken up into two terms:

e a smooth approximation S;(t) (lower freqs)
o a set of details D;(t) (higher freqgs)

2o 1 J—12-1
Zis(t) =Y k(D) + YD d i
k=0 Jj=jo k=0
Si(t) Di(t)

@ The parameter jy controls the separation. We set jo = 0.

J—12—1

z)(t) = codoo(t) + ) Y diacthi(t)-

j=0 k=0
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The Kernel-+Wavelet+Functional (KWF) model Piiieitom eligeridinn

A two step prediction algorithm

Step |: Dissimilarity between segments

Search the past for segments that are similar to the last one.
For two observed series of length 27 say Z,, and Z; we set for each scale j > jo:

21 1/2
. 1y2
dist)(Zm, 2) = | Y _(d? —d')
k=0
Then, we aggregate over the scales taking into account the number of
coefficients at each scale

J-1
D(Zm, Z)) = Z 272 dist;(Zm, Z))

J=o
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The Kernel-+Wavelet+Functional (KWF) model Piiieitom eligeridinn

A two step prediction algorithm

Step 2: Kernel regression

Obtain the prediction of the scale coefficients at the finest resolution
S = {cﬁf’:l) tk=0,1,...,27 — 1} for Z, 1

n—1
= = j : =
Znt+1 — Wm,n=m+1
m=1

K (252

n

Wimn = AT ( D(ZniZm)
Yo K (Z5=)
Finally, the prediction of Z,41 can be written

O
Zona(t) =Y iV uu(t)
k=0
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Numerical illustration

Conditional autoregressive hilbertian processes

CARH process

(Z,V) = {(Zk, k) € H xR k € Z} is a CARH(1) process if it is stationary
and and such that,

Zk = a+ pv,(Zk—1 — a) + e, k eZ, (2)

where for each v € R a, = E¥[Z|V], {ex}kez is an H—white noise
independent of V, and {pv, }«ez is a sequence of linear compact operators.

Theorem (Existence and uniqueness)

Ifsup, |lpv,|lc <1 a.s., then (2) defines a CARH process with an unique
stationary solution given by

oo

j—1
Zy=a+ Z Hpvk_P (Ekfj),
j=0 \p=0

with the convention HL ;; pv._, is the identity operator for j = 0.
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Numerical illustration

Conditional autoregressive hilbertian processes

Conditional covariance operators

Conditional covariance and cross covariance operators (on V at the point
v € RY) are respectively defined by

zeH—T,z=E"[(Z — a) ® (Z — a)(2)|V] and
zeEH— Az=E"[(Z — a) ® (4 — a)(2)| V],

where x € H — (u® v)(x) =< u,x > v.
@ For each v € R?: these are trace-class operators, thus Hilbert-Schimdt
(additionally T is positive definite and selfadjoint)
@ Spectral decomposition of [y, ', = ZJ.GN Avj(ev, ® evj), where
Av,1 > Av2 > ... > 0 are the eigenvalues and (e, j)jen the associated
eigenfunctions.
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Numerical illustration

Conditional autoregressive hilbertian processes

Estimation of the conditional covariance operators

@ Nonparametric Nadaraya-Watson like estimators.
o Context of dependent data (a—mixing framework)

Gun = Zn: Wh,i(v, ha)Z;

i=1

Frn =" wai(v, 1)(Zi = 3(v)) © (Z = 3(v))

Avn =" wni(v, hs)(Zim1 = 3(V)) @ (Z — 2n(v))

i=2

where the weights w, ; are defined by

K(h™ (v, v))

Wn,i(V, h) = Z;’:l K(h_l(\/l — v))
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Numerical illustration

Conditional autoregressive hilbertian processes

Estimation of p,

Two relation between the operators

A, =p 0, and A, =T,p;.

o If dim(H) < oo, the inversion of the operator ', gives us a way to
estimate p,.
@ Problem In the general case, the inverse of 'y is a problem: the operator is
not bounded and may not be defined over the whole space H ([Mas, 2000]).
However, for a well identify p, we can define a linear measurable mapping I';?
within a dense domain D.—1 C H, and using the closed graph theorem and the
fact that the range(Ay) C D-1, then restricted to Dy—1 we can write

po=TA

Classical results on linear operators allow us to extend pj by continuity to H.
Then, we focus on the estimation of p;.
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Numerical illustration

Conditional autoregressive hilbertian processes

Estimation of p,

We extend the two class of estimators proposed by [Mas, (2000)] proposed on the
ARH framework.

Let us call P% the projection operator from H to H . Then, we define the
projection estimator of p} by

kT pka\—1R* pkn
ﬁ\kx,n = (Pv rv,n'Dv ) Av,n'Dv . (4)
A whole class of resolvent estimators can be obtained using the resolvent of I,
m,n,p = bn,p(rvm)A;,m (5)

where we write bn,p,a(ﬂ,n) = (?v,,, + a,)~®*D with p >0, a, >0, n > 0.

Almost sure convergence results are obtained for all the propose estimator. In
addition, convergence on probability of both predictors Z)\Vk),,(Z,H.l) and

m,n,P(ZnJrl)'
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Numerical illustration

Conditional autoregressive hilbertian processes

Simulation and prediction

@ We extend the simulation strategies for ARH processes [Guillas & Damon
(2000)] to the simple case of an CARH process with d =1 and V is a i.i.d.
sequence of Beta(31, 32) rv.

@ Numerical experience: prediction of the electricity demand using the
temperature as exogenous information
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