Conditional Autoregressif Hilbertian process

Application to the electricity demand

Jairo Cugliari

SELECT Research Team

Sustain workshop, Bristol 11 September, 2012

Joint work with

ANESTIS ANTONIADIS (Univ. Grenoble)
JEAN-MICHEL POGGI (Univ. Paris Descartes)
XAVIER BROSSAT (EDF R&D)

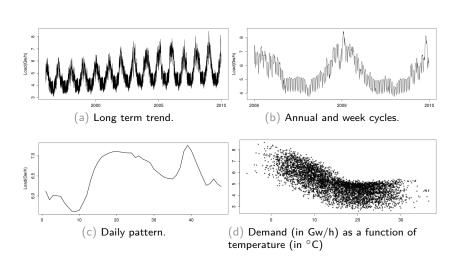
Outline

- Industrial motivation
- 2 Functional time series prediction
- 3 The Kernel+Wavelet+Functional (KWF) model
- 4 Conditional autoregressive hilbertian processes

Outline

- Industrial motivation
- 2 Functional time series prediction
- 3 The Kernel+Wavelet+Functional (KWF) mode
- 4 Conditional autoregressive hilbertian processes

Electricity demand data Some salient features



Electricity demand forecast

Short-term electricity demand forecast in literature

- Time series analysis: SARIMA(X), Kalman filter [Dordonnat et al. (2009)]
- Machine learning. [Devaine et al. (2010)]
- Similarity search based methods. [Poggi (1994), Antoniadis et al. (2006)]
- Regression: EDF modelisation scheme [Bruhns et al. (2005)], GAM [Pierrot and Goude (2011)], Bayesian approach [Launay, Philippe and Lamarche (2012)]

New challenges

- Market liberalization: may produce variations on clients' perimeter that risk to induce nonstationarities on the signal.
- Development of smart grids and smart meters.

But, almost all the models rely on a monoscale representation of the data

Electricity demand forecast

Short-term electricity demand forecast in literature

- Time series analysis: SARIMA(X), Kalman filter [Dordonnat et al. (2009)]
- Machine learning. [Devaine et al. (2010)]
- Similarity search based methods. [Poggi (1994), Antoniadis et al. (2006)]
- Regression: EDF modelisation scheme [Bruhns et al. (2005)], GAM [Pierrot and Goude (2011)], Bayesian approach [Launay, Philippe and Lamarche (2012)]

New challenges

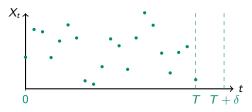
- Market liberalization: may produce variations on clients' perimeter that risk to induce nonstationarities on the signal.
- Development of smart grids and smart meters.

But, almost all the models rely on a monoscale representation of the data

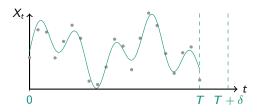
Outline

- 1 Industrial motivation
- 2 Functional time series prediction
- 3 The Kernel+Wavelet+Functional (KWF) mode
- 4 Conditional autoregressive hilbertian processes

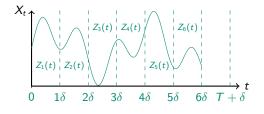
- Suppose one observes a square integrable continuous-time stochastic process $X = (X(t), t \in \mathbb{R})$ over the interval [0, T], T > 0;
- We want to predict X all over the segment $[T, T + \delta], \delta > 0$
- ullet Divide the interval into n subintervals of equal size δ
- Consider the functional-valued discrete time stochastic process $Z = (Z_k, k \in \mathbb{N})$, where $\mathbb{N} = \{1, 2, ...\}$, defined by



- Suppose one observes a square integrable continuous-time stochastic process $X = (X(t), t \in \mathbb{R})$ over the interval [0, T], T > 0;
- We want to predict X all over the segment $[T, T + \delta], \delta > 0$
- Divide the interval into n subintervals of equal size δ
- Consider the functional-valued discrete time stochastic process $Z=(Z_k, k\in\mathbb{N})$, where $\mathbb{N}=\{1,2,\ldots\}$, defined by



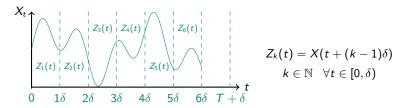
- Suppose one observes a square integrable continuous-time stochastic process $X = (X(t), t \in \mathbb{R})$ over the interval [0, T], T > 0;
- We want to predict X all over the segment $[T, T + \delta], \delta > 0$
- Divide the interval into n subintervals of equal size δ .
- Consider the functional-valued discrete time stochastic process $Z=(Z_k,k\in\mathbb{N})$, where $\mathbb{N}=\{1,2,\ldots\}$, defined by



$$Z_k(t) = X(t + (k-1)\delta)$$

 $k \in \mathbb{N} \quad \forall t \in [0, \delta)$

- Suppose one observes a square integrable continuous-time stochastic process $X = (X(t), t \in \mathbb{R})$ over the interval [0, T], T > 0;
- We want to predict X all over the segment $[T, T + \delta], \delta > 0$
- Divide the interval into n subintervals of equal size δ .
- Consider the functional-valued discrete time stochastic process $Z=(Z_k,k\in\mathbb{N})$, where $\mathbb{N}=\{1,2,\ldots\}$, defined by



If X contents a δ -seasonal component, Z is particularly fruitful.

Prediction of functional time series

Let $(Z_k, k \in \mathbb{Z})$ be a stationary sequence of H-valued r.v. Given Z_1, \ldots, Z_n we want to predict the future value of Z_{n+1} .

• A predictor of Z_{n+1} using Z_1, Z_2, \ldots, Z_n is

$$\widetilde{Z_{n+1}} = \mathbb{E}[Z_{n+1}|Z_n,Z_{n-1},\ldots,Z_1].$$

Autoregressive Hilbertian process of order

The ARH(1) centred process states that at each k,

$$Z_k = \rho(Z_{k-1}) + \epsilon_k \tag{1}$$

where ρ is a compact linear operator and $\{\epsilon_k\}_{k\in\mathbb{Z}}$ is an H-valued strong white noise.

Under mild conditions, equation (1) has a unique solution which is a strictly stationary process with innovation $\{\epsilon_k\}_{k\in\mathbb{Z}}$. [Bosq, (1991)]

When Z is a zero-mean ARH(1) process, the best predictor of Z_{n+1} giver $\{Z_1, \ldots, Z_{n-1}\}$ is:

$$\widetilde{Z_{n+1}} = \rho(Z_n)$$

Prediction of functional time series

Let $(Z_k, k \in \mathbb{Z})$ be a stationary sequence of H-valued r.v. Given Z_1, \ldots, Z_n we want to predict the future value of Z_{n+1} .

• A predictor of Z_{n+1} using Z_1, Z_2, \ldots, Z_n is

$$\widetilde{Z_{n+1}} = \mathbb{E}[Z_{n+1}|Z_n,Z_{n-1},\ldots,Z_1].$$

Autoregressive Hilbertian process of order 1

The ARH(1) centred process states that at each k,

$$Z_k = \rho(Z_{k-1}) + \epsilon_k \tag{1}$$

where ρ is a compact linear operator and $\{\epsilon_k\}_{k\in\mathbb{Z}}$ is an H-valued strong white noise.

Under mild conditions, equation (1) has a unique solution which is a strictly stationary process with innovation $\{\epsilon_k\}_{k\in\mathbb{Z}}$. [Bosq, (1991)]

When Z is a zero-mean ARH(1) process, the best predictor of Z_{n+1} given $\{Z_1, \ldots, Z_{n-1}\}$ is:

$$\widetilde{Z_{n+1}} = \rho(Z_n).$$

Outline

- 1 Industrial motivation
- Punctional time series prediction
- 3 The Kernel+Wavelet+Functional (KWF) model
- 4 Conditional autoregressive hilbertian processes

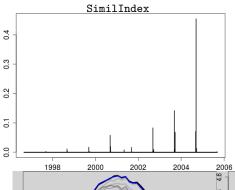
Let us predict Saturday 10 September 2005

We use Antoniadis *et al.*, (2006) prediction method with corrections to cope with non stationarity.

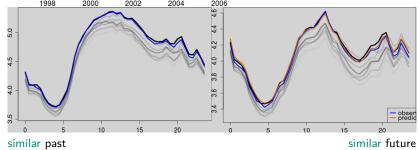
- Use the last observed segment (n = 9/Sept/2005) to look for similar segments in past.
- Construct a similarity index SimilIndex (using a kernel).
- Prediction can be written as

$$\widehat{\mathsf{Load}}_{n+1}(t) = \sum_{m=1}^{n-1} \mathsf{SimilIndex}_{m,n} \times \mathsf{Load}_{m+1}(t)$$

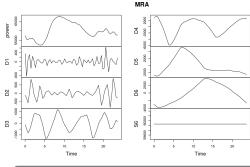
- First difference correction of the approximation part.
- Use of groups to anticipate calendar transitions.



date	SimilIndex
2004-09-10	0.455
2003-09-05	0.141
2002-09-06	0.083
2004-09-03	0.070
2003-09-19	0.068
2000-09-08	0.058
2000-09-15	0.019
1999-09-10	0.017



Wavelets to cope with FD



- domain-transform technique for hierarchical decomposing finite energy signals
- description in terms of a broad trend (approximation part), plus a set of localized changes kept in the details parts.

Discrete Wavelet Transform

If $z \in L_2([0,1])$ we can write it as

$$z(t) = \sum_{k=0}^{2^{j_0}-1} c_{j_0,k} \phi_{j_0,k}(t) + \sum_{j=j_0}^{\infty} \sum_{k=0}^{2^{j}-1} \frac{\mathsf{d}_{j,k}}{\mathsf{d}_{j,k}} \psi_{j,k}(t),$$

where $c_{j,k} = \langle g, \phi_{j,k} \rangle$, $d_{j,k} = \langle g, \varphi_{j,k} \rangle$ are the scale coefficients and wavelet coefficients respectively, and the functions ϕ et φ are associated to a orthogonal MRA of $L_2([0,1])$.

Approximation and details

- In practice, we don't dispose of the whole trajectory but only with a (possibly noisy) sampling at 2^J points, for some integer J.
- Each approximated segment $Z_{i,J}(t)$ is broken up into two terms:
 - a smooth approximation $S_i(t)$ (lower freqs)
 - a set of details $\mathcal{D}_i(t)$ (higher freqs)

$$Z_{i,J}(t) = \underbrace{\sum_{k=0}^{2^{j_0}-1} c_{j_0,k}^{(i)} \phi_{j_0,k}(t)}_{S_i(t)} + \underbrace{\sum_{j=j_0}^{J-1} \sum_{k=0}^{2^{j}-1} d_{j,k}^{(i)} \psi_{j,k}(t)}_{\mathcal{D}_i(t)}$$

• The parameter j_0 controls the separation. We set $j_0 = 0$.

$$\widetilde{z}_J(t) = c_0 \phi_{0,0}(t) + \sum_{i=0}^{J-1} \sum_{k=0}^{2^J-1} d_{j,k} \psi_{j,k}(t).$$

A two step prediction algorithm

Step I: Dissimilarity between segments

Search the past for segments that are similar to the last one. For two observed series of length 2^J say Z_m and Z_l we set for each scale $i > j_0$:

$$\mathsf{dist}_j(Z_m, Z_l) = \left(\sum_{k=0}^{2^j-1} (d_{j,k}^{(m)} - d_{j,k}^{(l)})^2\right)^{1/2}$$

Then, we aggregate over the scales taking into account the number of coefficients at each scale

$$D(Z_m, Z_l) = \sum_{i=i_0}^{J-1} 2^{-j/2} \mathsf{dist}_j(Z_m, Z_l)$$

A two step prediction algorithm

Step 2: Kernel regression

Obtain the prediction of the scale coefficients at the finest resolution $\Xi_{n+1} = \{c_{I,k}^{(n+1)} : k = 0, 1, \dots, 2^J - 1\}$ for Z_{n+1}

$$\widehat{\Xi}_{n+1} = \sum_{m=1}^{n-1} w_{m,n} \Xi_{m+1}$$

$$w_{m,n} = \frac{K\left(\frac{D(Z_n, Z_m)}{h_n}\right)}{\sum_{m=1}^{n-1} K\left(\frac{D(Z_n, Z_m)}{h_n}\right)}$$

Finally, the prediction of Z_{n+1} can be written

$$\widehat{Z_{n+1}(t)} = \sum_{k=0}^{2^J-1} \widehat{c_{J,k}^{(n+1)}} \phi_{J,k}(t)$$

Outline

- Industrial motivation
- Punctional time series prediction
- 3 The Kernel+Wavelet+Functional (KWF) mode
- 4 Conditional autoregressive hilbertian processes

CARH process

 $(Z,V)=\{(Z_k,V_k)\in H\times\mathbb{R}^d, k\in\mathbb{Z}\}$ is a CARH(1) process if it is stationary and and such that,

$$Z_k = a + \rho_{V_k}(Z_{k-1} - a) + \epsilon_k, \qquad k \in \mathbb{Z},$$
 (2)

where for each $v \in \mathbb{R}^d$, $a_v = \mathbb{E}^v[Z_0|V]$, $\{\epsilon_k\}_{k \in \mathbb{Z}}$ is an H-white noise independent of V, and $\{\rho_{V_k}\}_{k \in \mathbb{Z}}$ is a sequence of linear compact operators.

Theorem (Existence and uniqueness)

If $\sup_n \|\rho_{V_n}\|_{\mathcal{L}} < 1$ a.s., then (2) defines a CARH process with an unique stationary solution given by

$$Z_k = a + \sum_{j=0}^{\infty} \left(\prod_{p=0}^{j-1} \rho_{V_{k-p}} \right) (\epsilon_{k-j}),$$

with the convention $\prod_{p=0}^{j-1} \rho_{V_{k-p}}$ is the identity operator for j=0.

Conditional covariance operators

Conditional covariance and cross covariance operators (on V at the point $v \in \mathbb{R}^d$) are respectively defined by

$$z \in H \mapsto \Gamma_{v}z = \mathbb{E}^{v}[(Z_{0} - a) \otimes (Z_{0} - a)(z)|V]$$
 and $z \in H \mapsto \Delta_{v}z = \mathbb{E}^{v}[(Z_{0} - a) \otimes (Z_{1} - a)(z)|V],$

where
$$x \in H \to (u \otimes v)(x) = \langle u, x \rangle v$$
.

- For each $v \in \mathbb{R}^d$: these are trace-class operators, thus Hilbert-Schimdt (additionally Γ_v is positive definite and selfadjoint)
- Spectral decomposition of Γ_{v} , $\Gamma_{v} = \sum_{j \in \mathbb{N}} \lambda_{v,j} (e_{v,j} \otimes e_{v,j})$, where $\lambda_{v,1} \geq \lambda_{v,2} \geq \ldots \geq 0$ are the eigenvalues and $(e_{v,j})_{j \in \mathbb{N}}$ the associated eigenfunctions.

Estimation of the conditional covariance operators

- Nonparametric Nadaraya-Watson like estimators.
- Context of dependent data (α -mixing framework)

$$\hat{a}_{v,n} = \sum_{i=1}^n w_{n,i}(v,h_a)Z_i$$

$$\hat{\Gamma}_{v,n} = \sum_{i=1}^n w_{n,i}(v,h_\gamma)(Z_i - \hat{a}_n(v)) \otimes (Z_i - \hat{a}_n(v))$$

$$\hat{\Delta}_{v,n} = \sum_{i=2}^n w_{n,i}(v,h_\delta)(Z_{i-1} - \hat{a}_n(v)) \otimes (Z_i - \hat{a}_n(v))$$

where the weights $w_{n,i}$ are defined by

$$w_{n,i}(v,h) = \frac{K(h^{-1}(V_i - v))}{\sum_{i=1}^n K(h^{-1}(V_i - v))}.$$
 (3)

Two relation between the operators

$$\Delta_{v} = \rho_{v} \Gamma_{v}$$
 and $\Delta_{v}^{*} = \Gamma_{v} \rho_{v}^{*}$.

- If $\dim(H) < \infty$, the inversion of the operator Γ_{ν} gives us a way to estimate ρ_{ν} .
- Problem In the general case, the inverse of Γ_{ν} is a problem: the operator is not bounded and may not be defined over the whole space H ([Mas, 2000]).

However, for a well identify ρ_{ν} we can define a linear measurable mapping Γ_{ν}^{-1} within a dense domain $\mathcal{D}_{\Gamma_{\nu}^{-1}} \subset H$, and using the *closed graph theorem* and the fact that the range $(\Delta_{\nu}^*) \subset \mathcal{D}_{\Gamma_{\nu}^{-1}}$, then restricted to $\mathcal{D}_{\Gamma_{\nu}^{-1}}$ we can write

$$\rho_{\nu}^* = \Gamma_{\nu}^{-1} \Delta_{\nu}^*.$$

Classical results on linear operators allow us to extend ρ_v^* by continuity to H. Then, we focus on the estimation of ρ_v^* .

We extend the two class of estimators proposed by [Mas, (2000)] proposed on the ARH framework.

Let us call $P_{\nu}^{k_n}$ the projection operator from H to $H_{\nu}^{k_n}$. Then, we define the projection estimator of ρ_{ν}^* by

$$\widehat{\rho}_{v,n}^* = (P_v^{k_n} \widehat{\Gamma}_{v,n} P_v^{k_n})^{-1} \widehat{\Delta}_{v,n}^* P_v^{k_n}. \tag{4}$$

A whole class of resolvent estimators can be obtained using the resolvent of Γ_{ν}

$$\widehat{\rho}_{\nu,n,\rho}^* = b_{n,\rho}(\widehat{\Gamma}_{\nu,n})\widehat{\Delta}_{\nu,n}^*, \tag{5}$$

where we write $b_{n,p,\alpha}(\widehat{\Gamma}_{\nu,n}) = (\widehat{\Gamma}_{\nu,n} + \alpha_n I)^{-(p+1)}$ with $p \geq 0$, $\alpha_n \geq 0$, $n \geq 0$.

Almost sure convergence results are obtained for all the propose estimator. In addition, convergence on probability of both predictors $\widehat{\rho}_{\nu}^*(Z_{n+1})$ and $\widehat{\rho}_{v,n,p}^*(Z_{n+1}).$

Simulation and prediction

- We extend the simulation strategies for ARH processes [Guillas & Damon (2000)] to the simple case of an CARH process with d=1 and V is a i.i.d. sequence of Beta (β_1,β_2) rv.
- Numerical experience: prediction of the electricity demand using the temperature as exogenous information

