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The Tractography Data

Neurological study on disease progression and corresponding changes in
diffusion tensor images of the brain in multiple sclerosis (MS) patients.

>

MS affects the central nervous system and in particular damages
white matter tracts in the brain.

Diffusion tensor imaging (DTI) allows the extraction of information
on individual tracts.

Different tracts are considered, such as corpus callosum or the
corticospinal tract.

Functional measurements of water diffusivity such as fractional
anisotropy or magnetization transfer ratio.

Relating changes in neuronal tract properties extracted from the
diffusion tensor images to disability scores measured at each visit.

We will use the disability score obtained from the 9 hole peg test.



The Tractography Data
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LPFR

Longitudinal Penalized Functional Regression (Goldsmith et al., 2012)
Data of the form (Yj;, Xij1, . .., Xijp, Zijo, - - - » Zijg, Wij1(s), - . ., Wijg(s)),
where
> Y is the response for individual i at visit j (i =1,...,n;
j: 1,...,[7,');
> Wim(s) is the functional predictor over domain D,,, m=1,...,q;

> XU = (X,'jl, S ,X,'J'p)T and Z,J = (Z,j(), Ceey Z;jg)T are vectors of
additional variables.

For Hij = E(Y,J|b,,XU Z,j VV,'J'l,. cey VV,'jq)Z

p g q
pij = h(ng) and n; = a+y_ XgB+Y | Zibvi+) /D Wiim(s)vm(s) ds,
I=1 m=1 m

v=0

with fixed effects f1, ..., 8p, and iid vectors of random effects
(boiy- -, bgi) T = bi ~ N(0,T).



LPFR

Fitting Strategy:

>

Dimension reduction/smoothing using simple functional principal
components analysis (FPCA) of functional predictor curves W (s).

Coefficient functions 7,,(s) are expressed using a flexible spline basis.
Use mixed models formulation of penalized splines (see, e.g.,
Ruppert et al., 2003), e.g.

K
Y(s) = G0 + 015+ Y k(s — kk)+,
k=2
with random effects (92, ...,0k)" = u~ N(0,9?1).

The LPFR model can be represented as a generalized linear mixed
model.



LPFR

Advantages:
» Random effects b; account for correlation in the outcomes Yj;.
» Smoothness in the coefficient functions is induced.
» General mixed model software can be used for fitting.
» The mixed model framework allows the construction of confidence
intervals for estimated coefficient functions.

» Smoothing parameters that control the shape of the coefficient
functions can be automatically estimated by ML or REML.
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LPFR

Drawbacks:

Subject specific random intercepts (and slopes) to account for
within-subject correlation of outcomes, but

LPFR does not explicitly account for the longitudinal structure of the
functional predictor.
» FPCA decomposition used ignores the longitudinal structure of the
observations and may miss important sources of variability.
> The term fDm Wijm(5)¥m(s) ds does not separate the subject- and
visit-level effects of the curve Wjjp,.
» Separating effects essential if one is interested in the association
between individual components of variability and the outcome.
» LPFR in particular problematic when one of the components is not
actually associated with the outcome.



LFPCA

Longitudinal Functional Principal Components Analysis (Greven et al., 2010)

For subject i at visit j, measurement Wj;(s) at location s € D is modeled

as
Wii(s) = n(s, Ty) + Bio(s) + TiBi1(s) + Uy(s) +e;(s).

> T; the time of visit j for subject i,

> (s, T) the overall smooth mean surface,

» mean zero and mutually uncorrelated random processes
Bi(s) = {Bio(s), Bia(s)}, Uj(s) and ej(s),

» functional random intercept B;o(s) and random slope B; o(s),
capturing between-subject variation,

» visit-specific functional deviation Uj;(s) from the subject-specific
functional trend, capturing within-subject variation,

> white noise error g;(s).



LFPCA

Longitudinal Functional Principal Components Analysis (Greven et al., 2010)

For subject i at visit j, measurement Wj;(s) at location s € D is modeled
as

Wii(s) = n(s, Ty) + Bio(s) + T;Bia(s) + Uj(s) + ;(s).

> T; the time of visit j for subject i,

> (s, T) the overall smooth mean surface,

» mean zero and mutually uncorrelated random processes
Bi(s) = {Bio(s), Bia(s)}, Uj(s) and €j(s),

» functional random intercept B;o(s) and random slope B; o(s),
capturing between-subject variation,

» visit-specific functional deviation Uj;(s) from the subject-specific
functional trend, capturing within-subject variation,

> white noise error g;(s).

= Decompose functional variation into three parts: subject-specific
variation Bj(s), visit-specific variation Uj;(s), measurement error.
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Longitudinal Functional Principal Components Analysis (Greven et al., 2010)

Karhunen-Loéve expansion of the processes B;j(s) and Ujj(s) using
eigenfunctions (¢2, ¢1) and ¢VY:

)= €wdd(s), Bial Zsmk , Ug(s) =Y Gird? (s)
k=1 r=1
with principal component scores
= [ Buo(s)of(9) a5+ [ Eia(s)ob(s)ds, G = [ Us(s)o(s) o
D D D
uncorrelated random variables with mean zero and variances A\, and v,.

LFPCA uses a truncated version such that

W()~nsT,,+Z§,k¢k s) + Tiok(s) +Z<,,,¢ s) + eii(s).

k=1



LFPCA

Illustration (mean function)
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Illustration (B-process eigenfunctions)
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Illustration (U-process eigenfunctions)
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LFPCA

Illustration (variance components)
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LFPCR

Longitudinal Functional Principal Components Regression (Gertheiss et al., 2012)

Approach 1: Score LFPCR

P Ng Ny
pij = h(ng) and ny = a(Ty) + bi+ Y BiXy + Y Ok + Y 0:Cji

I=1 k=1 r=1

> Y is regressed on the scores £ and (.

» Since scores in the LFPCA model only refer to deviations from the
mean surface (s, Tj;), we include a time-varying intercept

Jpe(s)n(s, Ty) ds = a(Ty).
» We assume b; ~ N(0,72), additional random effects may be added
as done with LPFR.

» Additional functional predictors result in additional LFPCA scores
and can thus be easily included.

» Estimation via the generalized additive mixed models framework.



LFPCR

Longitudinal Functional Principal Components Regression (Gertheiss et al., 2012)

Approach 2: Smooth LFPCR
Reconstruct between-subject variation B;(s, Tj;) = Bjo(s) + T;jBii(s)
and within-subject variation Uj;(s).

» Bi(s, Tjj) represents the systematic trend in subject i over time.

> Uji(s) denotes visit-specific deviations from this trend.

Both parts may be important as predictors.

> Bi(s, Tjj) may be more relevant if Uj;(s) constitutes mostly
measurement error.

» Ujj(s) might be the more important component if curves that are
unusual for subject i are highly predictive for the outcome Yj;.
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Longitudinal Functional Principal Components Regression (Gertheiss et al., 2012)

Functional covariates Bj(s, Tj;) and Uj;(s) can now be used in a
functional regression model:

wij = h(ny) and n; = a(T,-,-)+b,-+/D v8(s)Bi(s, Tjj)ds +/D Yu(s)Uj(s)ds,

with B;(s, Ty) = Bio(s) + TyBi1(s) and Bjo(s) = S0, Eudd(s),
Bii(s) = 08, €udi(s), Us(s) = oM, Cnd¥(s).

» Additional functional predictors can be included as additional B- and
U-processes resulting from LFPCA of these curves.

» Coefficient functions g and 7y are estimated using penalized spline
expansions with tuning parameters estimated via ML or REML.
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Comparing Score and Smooth LFPCR

Ng Ny
SUCED WS Zek ([ Braorisias+ [ Batsiohsias)
ilS u S
gér/DUU( )oY (s)d
Ng Ng
/ Bio(s) S 0k (s)ds + / Bia(s) S 0ol(s)ds
D k=1 D k=1
Ny
+ /UU(S)Zérqbﬁj(s)ds
D r=1

» Functional linear model with predictors B; o(s), B; 1(s) and Uj(s).

» Coefficient functions restricted to spaces spanned by the first
eigenfunctions.

> Alternative: estimate these coefficient functions directly. (third way
to do LFPCR)

+
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Comparing Smooth LFPCR and LPFR

Assume that the LPFR model and the LFPCA decomposition hold.
:>/ Wii(s)v(s)ds = oz(T,-j)+/ ~v(s)Bi(s, 7',-J-)ds+/ ~v(s)Uji(s)ds+Ej,
D D

where &j; is noise with mean zero and a(T) = [, y(s)n(s, Tjj)ds.

> If Wj;(s) is smooth, LPFR can be seen as a special case of LFPCR
where v5(s) = yu(s) = ¥(s).
» If the LPFR model holds, and the LFPCA model is a reasonable

approximation to the (functional) data generating process, smooth
LFPCR will also be an adequate modeling approach.

> If the LFPCR model is correct and 7(s, Tj;) is not relevant for the
response, or vg(s) # Yu(s), LFPCR will outperform LPFR.



Simulation Studies
Setup

v

Scenario 1: LPFR model true, predictors generated according to the
LFPCA model.

Scenario 2: LPFR model true, predictors directly simulated.

v

Scenario 3: Score LFPCR true.
Scenario 4: Smooth LFPCR true, only U-process relevant.

v

v

v

Scenario 5: Smooth LFPCR true, only B-process relevant.



Simulation Studies
Setup

We consider the MSE %Z,’j(,u;j — fi;7)? and compare

» Score/Smooth LFPCR, each with 90% and 95% of the functional
covariates' variance explained.

» LPFR with truncated power basis or with B-splines.

» Simple benchmark methods:

> a saturated model with massive overfitting (OF), i.e., fijj = yij,
> a simple random intercept model without any covariates (RI),

> a random intercept model without covariates but including a smooth
trend function f(Tj), i.e., a model with time-effect (RI _te),

> a random intercept model (with smooth time-trend) where each
functional covariate is simply averaged (RI _avfun).



Simulation Studies

Results
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Simulation Studies

Results
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Simulation Studies

Results
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Application to Tractography Data

» Response: disability score obtained from the 9 hole peg test (peg9).

» We only found a clear dependence between measures along the
corticospinal tract and peg9.

» Fractional anisotropy (FA) and the magnetization transfer ratio
(MTR) along the corticospinal tract as functional predictors for
peg9.

» Additional scalar covariates: sex and age, and a dummy variable

indicating whether it’s the patient’s first visit or not.

» For modeling, we use LPFR and smooth LFPCR, both with Gamma
response distribution and log-link.



LPFR

estimated coefficient function
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LFPCR

B-process of FA

B-process of MTR
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LFPCR

U-process of MTR

U-process of FA
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B-process of FA B-process of MTR

time-varying intercept
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Summary and Discussion

>

We presented and compared different tools for scalar-on-function
regression when observations are taken repeatedly over time.

We proposed two novel versions of principal components regression
for longitudinal functional data: score LFPCR and smooth LFPCR.

LFPCR separates the influence of subject- and visit-specific variation
in the functional predictors.

Smooth LFPCR tends to perform better, and it yields nice
interpretations.

(Smooth) LFPCR is highly competitive to mixed models that use
functional covariates directly (LPFR).

Score LFPCR heavily depends on the number of principal
components Ng and Ny.

Thanks to implicit regularization when fitting coefficient functions,
smooth LFPCR is robust against different choices of Ng and Ny .
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